Painleve I double scaling limit in the cubic random matrix model

被引:16
作者
Bleher, Pavel [1 ]
Deano, Alfredo [2 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
基金
美国国家科学基金会;
关键词
Random matrices; asymptotic representation in the complex domain; Riemann-Hilbert problems; topological expansion; partition function; double scaling limit; Painleve I equation; ORTHOGONAL POLYNOMIALS; PARTITION-FUNCTION; ASYMPTOTICS; RESPECT;
D O I
10.1142/S2010326316500040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the double scaling asymptotic behavior of the recurrence coefficients and the partition function at the critical point of the NxN Hermitian random matrix model with cubic potential. We prove that the recurrence coefficients admit an asymptotic expansion in powers of N-2/5, and in the leading order the asymptotic behavior of the recurrence coefficients is given by a Boutroux tronquee solution to the Painleve I equation. We also obtain the double scaling limit of the partition function, and we prove that the poles of the tronquee solution are limits of zeros of the partition function. The tools used include the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method for the corresponding family of complex orthogonal polynomials and their recurrence coefficients, together with the Toda equation in the parameter space.
引用
收藏
页数:58
相关论文
共 50 条
[21]   A Matrix Model for the Topological String I: Deriving the Matrix Model [J].
Bertrand Eynard ;
Amir-Kian Kashani-Poor ;
Olivier Marchal .
Annales Henri Poincaré, 2014, 15 :1867-1901
[22]   Random Matrix Model with External Source and a Constrained Vector Equilibrium Problem [J].
Bleher, P. ;
Delvaux, S. ;
Kuijlaars, A. B. J. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) :116-160
[23]   Analyticity results for the cumulants in a random matrix model [J].
Gurau, Razvan G. ;
Krajewski, Thomas .
ANNALES DE L INSTITUT HENRI POINCARE D, 2015, 2 (02) :169-228
[24]   Non-Intersecting Squared Bessel Paths: Critical Time and Double Scaling Limit [J].
Kuijlaars, A. B. J. ;
Martinez-Finkelshtein, A. ;
Wielonsky, F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (01) :227-279
[25]   On the Largest Eigenvalue of a Hermitian Random Matrix Model with Spiked External Source I. Rank 1 Case [J].
Baik, Jinho ;
Wang, Dong .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (22) :5164-5240
[26]   Singular linear statistics of the Laguerre unitary ensemble and Painleve. III. Double scaling analysis [J].
Chen, Min ;
Chen, Yang .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)
[27]   TWO LAX SYSTEMS FOR THE PAINLEVE II EQUATION, AND TWO RELATED KERNELS IN RANDOM MATRIX THEORY [J].
Liechty, Karl ;
Wang, Dong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (05) :3618-3666
[28]   A scaling limit of the parabolic Anderson model with exclusion interaction [J].
Erhard, Dirk ;
Hairer, Martin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (02) :1065-1125
[29]   Scaled Limit and Rate of Convergence for the Largest Eigenvalue from the Generalized Cauchy Random Matrix Ensemble [J].
Najnudel, Joseph ;
Nikeghbali, Ashkan ;
Rubin, Felix .
JOURNAL OF STATISTICAL PHYSICS, 2009, 137 (02) :373-406
[30]   Scaling limits of random normal matrix processes at singular boundary points [J].
Ameur, Yacin ;
Kang, Nam-Gyu ;
Makarov, Nikolai ;
Wennman, Aron .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (03)