Simulating a perceptron on a quantum computer

被引:97
|
作者
Schuld, Maria [1 ]
Sinayskiy, Ilya [1 ,2 ]
Petruccione, Francesco [1 ,2 ]
机构
[1] Univ KwaZulu Natal Durban, Sch Chem & Phys, Quantum Res Grp, ZA-4001 Kwa Zulu, South Africa
[2] Natl Inst Theoret Phys NITheP, ZA-4001 Kwa Zulu, South Africa
基金
新加坡国家研究基金会;
关键词
Quantum neural network; Quantum machine learning; Quantum computing; Linear classification; MODEL;
D O I
10.1016/j.physleta.2014.11.061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Perceptrons are the basic computational unit of artificial neural networks, as they model the activation mechanism of an output neuron due to incoming signals from its neighbours. As linear classifiers, they play an important role in the foundations of machine learning. In the context of the emerging field of quantum machine learning, several attempts have been made to develop a corresponding unit using quantum information theory. Based on the quantum phase estimation algorithm, this paper introduces a quantum perceptron model imitating the step-activation function of a classical perceptron. This scheme requires resources in O(n) (where n is the size of the input) and promises efficient applications for more complex structures such as trainable quantum neural networks. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:660 / 663
页数:4
相关论文
共 50 条
  • [1] Quantum perceptron over a field and neural network architecture selection in a quantum computer
    da Silva, Adenilton Jose
    Ludermir, Teresa Bernarda
    de Oliveira, Wilson Rosa
    NEURAL NETWORKS, 2016, 76 : 55 - 64
  • [2] Simulating dirty bosons on a quantum computer
    Oftelie, Lindsay Bassman
    Van Beeumen, Roel
    Camps, Daan
    de Jong, Wibe A.
    Dupont, Maxime
    NEW JOURNAL OF PHYSICS, 2024, 26 (01):
  • [3] Algorithm for simulating ocean circulation on a quantum computer
    Shang, Ruimin
    Wang, Zhimin
    Shi, Shangshang
    Li, Jiaxin
    Li, Yanan
    Gu, Yongjian
    SCIENCE CHINA-EARTH SCIENCES, 2023, 66 (10) : 2254 - 2264
  • [4] Algorithm for simulating ocean circulation on a quantum computer
    Shang, Ruimin
    Wang, Zhimin
    Shi, Shangshang
    Li, Jiaxin
    Li, Yanan
    Gu, Yongjian
    SCIENCE CHINA-EARTH SCIENCES, 2023,
  • [5] Approaches to Avoid Overfitting in a Quantum Perceptron
    de Paula Neto, Fernando M.
    Filho, Gustavo I. S.
    Monteiro, Claudio A.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [6] Toward simulating superstring/M-theory on a quantum computer
    Gharibyan, Hrant
    Hanada, Masanori
    Honda, Masazumi
    Liu, Junyu
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (07)
  • [7] A Variational Algorithm for Quantum Single Layer Perceptron
    Macaluso, Antonio
    Orazi, Filippo
    Klusch, Matthias
    Lodi, Stefano
    Sartori, Claudio
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2022, PT II, 2023, 13811 : 341 - 356
  • [8] A continuous rosenblatt quantum perceptron
    Maronese, Marco
    Prati, Enrico
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2021, 19 (04)
  • [9] Continuous variable quantum perceptron
    Benatti, F.
    Mancini, S.
    Mangini, S.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2019, 17 (08)
  • [10] Storage properties of a quantum perceptron
    Gratsea, Katerina
    Kasper, Valentin
    Lewenstein, Maciej
    PHYSICAL REVIEW E, 2024, 110 (02)