Quantitative variations in texture analysis features dependent on MRI scanning parameters: A phantom model

被引:63
作者
Buch, Karen [1 ]
Kuno, Hirofumi [1 ,2 ]
Qureshi, Muhammad M. [1 ,3 ]
Li, Baojun [1 ]
Sakai, Osamu [1 ,3 ,4 ]
机构
[1] Boston Univ, Sch Med, Dept Radiol, Boston Med Ctr, Boston, MA 02118 USA
[2] Natl Canc Ctr Hosp East, Dept Diagnost Radiol, Kashiwa, Chiba, Japan
[3] Boston Univ, Sch Med, Dept Radiat Oncol, Boston Med Ctr, Boston, MA 02118 USA
[4] Boston Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Boston Med Ctr, Boston, MA 02118 USA
基金
日本学术振兴会;
关键词
phantom; quantitative MRI; texture analysis; CONTRAST-ENHANCED CT; IMAGING FEATURES; CELL CARCINOMA; RADIOMICS; CLASSIFICATION; LUNG; DISCRIMINATION; HETEROGENEITY; GLIOBLASTOMA; INFORMATION;
D O I
10.1002/acm2.12482
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To evaluate the influence of MRI scanning parameters on texture analysis features. Methods Publicly available data from the Reference Image Database to Evaluate Therapy Response (RIDER) project sponsored by The Cancer Imaging Archive included MRIs on a phantom comprised of 18 25-mm doped, gel-filled tubes, and 1 20-mm tube containing 0.25 mM Gd-DTPA (EuroSpinII Test Object5, Diagnostic Sonar, Ltd, West Lothian, Scotland). MRIs performed on a 1.5 T GE HD, 1.5 T Siemens Espree (VB13), or 3.0 T GE HD with TwinSpeed gradients with an eight-channel head coil included T1WIs with multiple flip angles (flip-angle = 2,5,10,15,20,25,30), TR/TE = 4.09-5.47/0.90-1.35 ms, NEX = 1 and DCE with 30 degrees flip-angle, TR/TE=4.09-5.47/0.90-1.35, and NEX = 1,4. DICOM data were imported into an in-house developed texture analysis program which extracted 41-texture features including histogram, gray-level co-occurrence matrix (GLCM), and gray-level run-length (GLRL). Two-tailed t tests, corrected for multiple comparisons (Q values) were calculated to compare changes in texture features with variations in MRI scanning parameters (magnet strength, flip-angle, number of excitations (NEX), scanner platform). Results Significant differences were seen in histogram features (mean, median, standard deviation, range) with variations in NEX (Q = 0.003-0.045) and scanner platform (Q < 0.0001), GLCM features (entropy, contrast, energy, and homogeneity) with NEX (Q = 0.001-0.018) and scanner platform (Q < 0.0001), GLRL features (long-run emphasis, high gray-level run emphasis, high gray-level emphasis) with magnet strength (Q = 0.0003), NEX (Q = 0.003-0.022) and scanner platform (Q < 0.0001). Conclusion Significant differences were seen in many texture features with variations in MRI acquisition emphasizing the need for standardized MRI technique.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 39 条
[1]   Prognostic Value of Computed Tomography Texture Features in Non-Small Cell Lung Cancers Treated With Definitive Concomitant Chemoradiotherapy [J].
Ahn, Su Yeon ;
Park, Chang Min ;
Park, Sang Joon ;
Kim, Hak Jae ;
Song, Changhoon ;
Lee, Sang Min ;
McAdams, Holman Page ;
Goo, Jin Mo .
INVESTIGATIVE RADIOLOGY, 2015, 50 (10) :719-725
[2]   Texture analysis of high resolution MRI allows discrimination between febrile and afebrile initial precipitating injury in mesial temporal sclerosis [J].
Alegro, Maryana de Carvalho ;
Silva, Alexandre Valotta ;
Bando, Silvia Yumi ;
Lopes, Roseli de Deus ;
Martins de Castro, Luiz Henrique ;
HungTsu, Wen ;
Moreira-Filho, Carlos Alberto ;
Amaro, Edson, Jr. .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (05) :1647-1653
[3]  
[Anonymous], 2008, Image Processing, Analysis, and Machine Vision
[4]   Texture-based classification of different gastric tumors at contrast-enhanced CT [J].
Ba-Ssalamah, Ahmed ;
Muin, Dina ;
Schernthaner, Ruediger ;
Kulinna-Cosentini, Christiana ;
Bastati, Nina ;
Stift, Judith ;
Gore, Richard ;
Mayerhoefer, Marius E. .
EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (10) :E537-E543
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[7]   Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters [J].
Brynolfsson, Patrik ;
Nilsson, David ;
Torheim, Turid ;
Asklund, Thomas ;
Karlsson, Camilla Thellenberg ;
Trygg, Johan ;
Nyholm, Tufve ;
Garpebring, Anders .
SCIENTIFIC REPORTS, 2017, 7
[8]   Quantitative Assessment of Variation in CT Parameters on Texture Features: Pilot Study Using a Nonanatomic Phantom [J].
Buch, K. ;
Li, B. ;
Qureshi, M. M. ;
Kuno, H. ;
Anderson, S. W. ;
Sakai, O. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (05) :981-985
[9]   Using Texture Analysis to Determine Human Papillomavirus Status of Oropharyngeal Squamous Cell Carcinomas on CT [J].
Buch, K. ;
Fujita, A. ;
Li, B. ;
Kawashima, Y. ;
Qureshi, M. M. ;
Sakai, O. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (07) :1343-1348
[10]   Imaging genomic mapping of an invasive MRI phenotype predicts patient outcome and metabolic dysfunction: a TCGA glioma phenotype research group project [J].
Colen, Rivka R. ;
Vangel, Mark ;
Wang, Jixin ;
Gutman, David A. ;
Hwang, Scott N. ;
Wintermark, Max ;
Jain, Rajan ;
Jilwan-Nicolas, Manal ;
Chen, James Y. ;
Raghavan, Prashant ;
Holder, Chad A. ;
Rubin, Daniel ;
Huang, Eric ;
Kirby, Justin ;
Freymann, John ;
Jaffe, Carl C. ;
Flanders, Adam ;
Zinn, Pascal O. .
BMC MEDICAL GENOMICS, 2014, 7