On the non-existence of 3-dimensional tiling in the Lee metric

被引:23
作者
Gravier, S
Mollard, M
Payan, C
机构
[1] Univ Grenoble 1, IMAG, Lab Leibniz, F-38041 Grenoble, France
[2] CNRS, Lab Leibniz, IMAG, F-38041 Grenoble 9, France
关键词
D O I
10.1006/eujc.1998.0211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there does not exist a tiling with Lee spheres of radius at least 2 in the 3-dimensional Euclidean space. In particular, this result verifies a conjecture of Golomb and Welch for n = 3. (C) 1998 Academic Press.
引用
收藏
页码:567 / 572
页数:6
相关论文
共 7 条
[1]   PACKING AND COVERING BY TRANSLATES OF CERTAIN NON-CONVEX BODIES [J].
EVERETT, H ;
HICKERSON, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 75 (01) :87-91
[2]  
Golomb S. W., 1968, Error correcting codes, P175
[3]   PERFECT CODES IN LEE METRIC AND PACKING OF POLYOMINOES [J].
GOLOMB, SW ;
WELCH, LR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1970, 18 (02) :302-+
[4]   NONEXISTENCE THEOREMS ON PERFECT LEE CODES OVER LARGE ALPHABETS [J].
POST, KA .
INFORMATION AND CONTROL, 1975, 29 (04) :369-380
[5]  
STEIN SK, 1994, CARUS, V25
[6]   ON MOSAICS CONSISTING OF MULTIDIMENSIONAL CROSSES [J].
SZABO, S .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1981, 38 (1-4) :191-203
[7]   ON THE PROBLEM OF REGULARITY OF A TYPE OF N-DIMENSIONAL TILINGS [J].
SZABO, S .
DISCRETE MATHEMATICS, 1983, 45 (2-3) :313-317