Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects

被引:66
作者
Li, Tianhang [1 ]
Liu, Tianyao [1 ]
Zhu, Wenjie [1 ]
Xie, Shangxun [1 ]
Zhao, Zihan [1 ]
Feng, Baofu [1 ]
Guo, Hongqian [1 ]
Yang, Rong [1 ]
机构
[1] Nanjing Univ, Affiliated Hosp, Sch Med, Nanjing Drum Tower Hosp,Inst Urol,Dept Urol, Zhongshan Rd 321, Nanjing 210008, Peoples R China
基金
中国国家自然科学基金;
关键词
Myeloid; derived suppressor cells; ICB; PD-(L) 1; TME; immune escape; SQUAMOUS-CELL CARCINOMA; TUMOR-ASSOCIATED MACROPHAGES; LIGAND; EXPRESSION; SUPPRESSOR-CELLS; MYELOID CELLS; MUTATIONAL BURDEN; INDOLEAMINE 2,3-DIOXYGENASE; ACQUIRED-RESISTANCE; CTLA-4; BLOCKADE; DENDRITIC CELLS;
D O I
10.1177/11795549211035540
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Immune-checkpoint blockade (ICB) demonstrated inspiring effect and great promise in anti-cancer therapy. However, many obstacles, such as drug resistance and difficulty in patient selection, limited the efficacy of ICB therapy and awaited to be overcome. By timely identification and intervention of the key immune-suppressive promotors in the tumor microenvironment (TME), we may better understand the mechanisms of cancer immune-escape and use novel strategies to enhance the therapeutic effect of ICB. Myeloid-derived suppressor cell (MDSC) is recognized as a major immune suppressor in the TME. In this review, we summarized the roles MDSC played in the cancer context, focusing on its negative biologic functions in ICB therapy, discussed the strategies targeted on MDSC to optimize the diagnosis and therapy process of ICB and improve the efficacy of ICB therapy against malignancies.
引用
收藏
页数:14
相关论文
共 187 条
[1]   Blockade of myeloid-derived suppressor cell function by valproic acid enhanced anti-PD-L1 tumor immunotherapy [J].
Adeshakin, Adeleye O. ;
Yan, Dehong ;
Zhang, Mengqi ;
Wang, Lulu ;
Adeshakin, Funmilayo O. ;
Liu, Wan ;
Wan, Xiaochun .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 522 (03) :604-611
[2]   Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment [J].
Alexander, Eric T. ;
Minton, Allyson R. ;
Peters, Molly C. ;
van Ryn, Joanne ;
Gilmour, Susan K. .
ONCOTARGET, 2016, 7 (51) :85291-85305
[3]   Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors [J].
Bae, Jooeun ;
Hideshima, Teru ;
Tai, Yu-Tzu ;
Song, Yan ;
Richardson, Paul ;
Raje, Noopur ;
Munshi, Nikhil C. ;
Anderson, Kenneth C. .
LEUKEMIA, 2018, 32 (09) :1932-1947
[4]   Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance [J].
Bagchi, Sreya ;
Yuan, Robert ;
Engleman, Edgar G. .
ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 16, 2021, 2021, 16 :223-249
[5]   First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study [J].
Balar, Arjun V. ;
Castellano, Daniel ;
O'Donnell, Peter H. ;
Grivas, Petros ;
Vuky, Jacqueline ;
Powles, Thomas ;
Plimack, Elizabeth R. ;
Hahn, Noah M. ;
de Wit, Ronald ;
Pang, Lei ;
Savage, Mary J. ;
Perini, Rodolfo F. ;
Keefe, Stephen M. ;
Bajorin, Dean ;
Bellmunt, Joaquim .
LANCET ONCOLOGY, 2017, 18 (11) :1483-1492
[6]   Single Cell Mass Cytometry Revealed the Immunomodulatory Effect of Cisplatin Via Downregulation of Splenic CD44+, IL-17A+MDSCs and Promotion of Circulating IFN-γ plus Myeloid Cells in the 4T1 Metastatic Breast Cancer Model [J].
Balog, Jozsef A. ;
Hackler, Laszlo, Jr. ;
Kovacs, Anita K. ;
Neuperger, Patricia ;
Alfoeldi, Robert ;
Nagy, Lajos I. ;
Puskas, Laszlo G. ;
Szebeni, Gabor J. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (01)
[7]   Levels of peripheral blood polymorphonuclear myeloid-derived suppressor cells and selected cytokines are potentially prognostic of disease progression for patients with non-small cell lung cancer [J].
Barrera, Lourdes ;
Montes-Servin, Edgar ;
Hernandez-Martinez, Juan-Manuel ;
Orozco-Morales, Mario ;
Montes-Servin, Elizabeth ;
Michel-Tello, David ;
Augusto Morales-Flores, Renato ;
Flores-Estrada, Diana ;
Arrieta, Oscar .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2018, 67 (09) :1393-1406
[8]   Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma [J].
Binsfeld, Marilene ;
Muller, Josephine ;
Lamour, Virginie ;
De Veirman, Kim ;
De Raeve, Hendrik ;
Bellahcene, Akeila ;
Van Valckenborgh, Els ;
Baron, Frederic ;
Beguin, Yves ;
Caers, Jo ;
Heusschen, Roy .
ONCOTARGET, 2016, 7 (25) :37931-37943
[9]   Exosomes Produced by Mesenchymal Stem Cells Drive Differentiation of Myeloid Cells into Immunosuppressive M2-Polarized Macrophages in Breast Cancer [J].
Biswas, Subir ;
Mandal, Gunjan ;
Chowdhury, Sougata Roy ;
Purohit, Suman ;
Payne, Kyle K. ;
Anadon, Carmen ;
Gupta, Arnab ;
Swanson, Patricia ;
Yu, Xiaoqing ;
Conejo-Garcia, Jose R. ;
Bhattacharyya, Arindam .
JOURNAL OF IMMUNOLOGY, 2019, 203 (12) :3447-3460
[10]   Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis [J].
Bonapace, Laura ;
Coissieux, Marie-May ;
Wyckoff, Jeffrey ;
Mertz, Kirsten D. ;
Varga, Zsuzsanna ;
Junt, Tobias ;
Bentires-Alj, Mohamed .
NATURE, 2014, 515 (7525) :130-133