A 33-Year NPP Monitoring Study in Southwest China by the Fusion of Multi-Source Remote Sensing and Station Data

被引:31
作者
Guan, Xiaobin [1 ]
Shen, Huanfeng [1 ,2 ]
Gan, Wenxia [3 ]
Yang, Gang [4 ]
Wang, Lunche [5 ]
Li, Xinghua [6 ]
Zhang, Liangpei [2 ,7 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Hubei, Peoples R China
[2] Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Hubei, Peoples R China
[3] Wuhan Inst Technol, Sch Resource & Civil Engn, Wuhan 430205, Hubei, Peoples R China
[4] Ningbo Univ, Dept Geog & Spatial Informat Techn, Ningbo 315211, Zhejiang, Peoples R China
[5] China Univ Geosci, Sch Earth Sci, Lab Crit Zone Evolut, Wuhan 430074, Hubei, Peoples R China
[6] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China
[7] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
net primary productivity; multi-sensor information fusion; regional scale; long-term time series; spatio-temporal analysis; climate control; NET PRIMARY PRODUCTIVITY; GROSS PRIMARY PRODUCTIVITY; SOLAR-RADIATION; LONG-TERM; TERRESTRIAL ECOSYSTEMS; IMPROVING ESTIMATION; VEGETATION INDEXES; RESOLUTION NDVI; CLIMATE-CHANGE; LAND-COVER;
D O I
10.3390/rs9101082
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Knowledge of regional net primary productivity (NPP) is important for the systematic understanding of the global carbon cycle. In this study, multi-source data were employed to conduct a regional NPP study in southwest China, with a 33-year time span and a 1-km scale. A multi-sensor fusion framework was applied to obtain a new normalized difference vegetation index (NDVI) time series from 1982 to 2014, combining the advantages of different remote sensing datasets. As another key parameter for NPP modeling, the total solar radiation was calculated utilizing the improved Yang hybrid model (YHM), based on meteorological station data. The accuracy of the data processes is proved reliable by verification experiments. Moreover, NPP estimated by fused NDVI shows an obvious improved accuracy than that based on the original data. The spatio-temporal analysis results indicated that 67% of the study area showed an increasing NPP trend over the past three decades. The correlation between NPP and precipitation was significant heterogeneous at the monthly scale; specifically, the correlation is negative in the growing season and positive in the dry season. Meanwhile, the lagged positive correlation in the growing season and no lag in the dry season indicated the important impacts of precipitation on NPP. What is more, we found that there are three distinct stages during the variation of NPP, which were driven by different climatic factors. Significant climate warming led to a great increase of NPP from 1992 to 2002, while NPP clearly decreased during 1982-1992 and 2002-2014 due to the frequent droughts caused by the precipitation decrease.
引用
收藏
页数:23
相关论文
共 83 条
[1]   Characterization of Drought Development through Remote Sensing: A Case Study in Central Yunnan, China [J].
Abbas, Sawaid ;
Nichol, Janet E. ;
Qamer, Faisal M. ;
Xu, Jianchu .
REMOTE SENSING, 2014, 6 (06) :4998-5018
[2]   Trends and Variability of AVHRR-Derived NPP in India [J].
Bala, Govindasamy ;
Joshi, Jaideep ;
Chaturvedi, Rajiv K. ;
Gangamani, Hosahalli V. ;
Hashimoto, Hirofumi ;
Nemani, Rama .
REMOTE SENSING, 2013, 5 (02) :810-829
[3]   Global evaluation of four AVHRR-NDVI data sets: Intercomparison and assessment against Landsat imagery [J].
Beck, Hylke E. ;
McVicar, Tim R. ;
van Dijk, Albert I. J. M. ;
Schellekens, Jaap ;
de Jeu, Richard A. M. ;
Bruijnzeel, L. Adrian .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (10) :2547-2563
[4]   Spatial scaling of a remotely sensed surface parameter by contexture [J].
Chen, JM .
REMOTE SENSING OF ENVIRONMENT, 1999, 69 (01) :30-42
[5]   A Spatial and Temporal Nonlocal Filter-Based Data Fusion Method [J].
Cheng, Qing ;
Liu, Huiqing ;
Shen, Huanfeng ;
Wu, Penghai ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08) :4476-4488
[6]  
Chhabra A, 2004, CURR SCI INDIA, V86, P269
[7]   Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system [J].
Ciais, P. ;
Dolman, A. J. ;
Bombelli, A. ;
Duren, R. ;
Peregon, A. ;
Rayner, P. J. ;
Miller, C. ;
Gobron, N. ;
Kinderman, G. ;
Marland, G. ;
Gruber, N. ;
Chevallier, F. ;
Andres, R. J. ;
Balsamo, G. ;
Bopp, L. ;
Breon, F. -M. ;
Broquet, G. ;
Dargaville, R. ;
Battin, T. J. ;
Borges, A. ;
Bovensmann, H. ;
Buchwitz, M. ;
Butler, J. ;
Canadell, J. G. ;
Cook, R. B. ;
DeFries, R. ;
Engelen, R. ;
Gurney, K. R. ;
Heinze, C. ;
Heimann, M. ;
Held, A. ;
Henry, M. ;
Law, B. ;
Luyssaert, S. ;
Miller, J. ;
Moriyama, T. ;
Moulin, C. ;
Myneni, R. B. ;
Nussli, C. ;
Obersteiner, M. ;
Ojima, D. ;
Pan, Y. ;
Paris, J. -D. ;
Piao, S. L. ;
Poulter, B. ;
Plummer, S. ;
Quegan, S. ;
Raymond, P. ;
Reichstein, M. ;
Rivier, L. .
BIOGEOSCIENCES, 2014, 11 (13) :3547-3602
[8]   Europe-wide reduction in primary productivity caused by the heat and drought in 2003 [J].
Ciais, P ;
Reichstein, M ;
Viovy, N ;
Granier, A ;
Ogée, J ;
Allard, V ;
Aubinet, M ;
Buchmann, N ;
Bernhofer, C ;
Carrara, A ;
Chevallier, F ;
De Noblet, N ;
Friend, AD ;
Friedlingstein, P ;
Grünwald, T ;
Heinesch, B ;
Keronen, P ;
Knohl, A ;
Krinner, G ;
Loustau, D ;
Manca, G ;
Matteucci, G ;
Miglietta, F ;
Ourcival, JM ;
Papale, D ;
Pilegaard, K ;
Rambal, S ;
Seufert, G ;
Soussana, JF ;
Sanz, MJ ;
Schulze, ED ;
Vesala, T ;
Valentini, R .
NATURE, 2005, 437 (7058) :529-533
[9]   Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J].
Cox, PM ;
Betts, RA ;
Jones, CD ;
Spall, SA ;
Totterdell, IJ .
NATURE, 2000, 408 (6809) :184-187
[10]   Comparing global models of terrestrial net primary productivity (NPP): overview and key results [J].
Cramer, W ;
Kicklighter, DW ;
Bondeau, A ;
Moore, B ;
Churkina, G ;
Nemry, B ;
Ruimy, A ;
Schloss, AL .
GLOBAL CHANGE BIOLOGY, 1999, 5 :1-15