Distorted carbon nitride nanosheets with activated n → π* transition and preferred textural properties for photocatalytic CO2 reduction

被引:138
|
作者
Wang, Ruirui [1 ]
Yang, Pengju [2 ]
Wang, Sibo [1 ]
Wang, Xinchen [1 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Peoples R China
[2] Shanxi Univ, Sch Chem & Chem Engn, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Carbon nitrides; Photocatalysis; CO2; reduction; n-pi* electron transition; Distorted structure; METAL-ORGANIC FRAMEWORKS; HIGHLY EFFICIENT; ABSORPTION; CONVERSION; NANOTUBES;
D O I
10.1016/j.jcat.2021.08.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrathin polymeric carbon nitride nanosheets (PCN-NSs) are considered as a promising semiconductor photocatalyst for CO2 reduction, but the achieved efficiency is still unsatisfactory. Herein, a methanol-mediated steam delaminating strategy is demonstrated to fabricate distorted PCN-NSs (d-PCN-NSs) with activated n-pi* electron transition and favorite textural properties. The ultrathin d-PCN-NSs can absorb optical spectrum extending to 700 nm, accelerate separation and transportation of photoinduced charge carriers, and deliver rich disclosed active sites for CO2 adsorption/activation. Compared to that of pristine PCN and plane PCN-NSs, the CO2-to-CO conversion activity of d-PCN-NSs is enhanced by 35.7 and 4.4 times, respectively, displaying a high apparent quantum efficiency (AQE) of 3.8% under photoirradiation at 420 nm. Of note, the d-PCN-NSs photocatalyst can still catalyze a CO2 photoreduction reaction under 660 nm illumination. Based on the key catalytic-active intermediate (i.e., COOH*) determined by in-situ diffuse reflectance infrared Fourier transform spectroscopy, the possible mechanism of the tandem CO2 photoreduction catalysis is proposed. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:166 / 176
页数:11
相关论文
共 50 条
  • [1] Synthesis of Carbon Nitride Nanosheets with n→π* Electronic Transition for Boosting Photocatalytic CO2 Reduction
    Song, Bing
    Zhang, Min
    Hou, Shiying
    Liang, Huirong
    Li, Qiuye
    Yang, Jianjun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (03)
  • [2] Layered Heterostructures of Ultrathin Polymeric Carbon Nitride and ZnIn2S4 Nanosheets for Photocatalytic CO2 Reduction
    Zhou, Min
    Wang, Sibo
    Yang, Pengju
    Luo, Zhishan
    Yuan, Rusheng
    Asiri, Abdullah M.
    Wakeel, Muhammad
    Wang, Xinchen
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (69) : 18529 - 18534
  • [3] Photocatalytic CO2 Reduction by Mesoporous Polymeric Carbon Nitride Photocatalysts
    Tasbihi, Minoo
    Acharjya, Amitava
    Thomas, Arne
    Reli, Martin
    Ambrozova, Nela
    Koci, Kamila
    Schomaecker, Reinhard
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (08) : 5636 - 5644
  • [4] Thickness regulation of graphitic carbon nitride and its influence on the photocatalytic performance towards CO2 reduction
    Song, Xianghai
    Wang, Mei
    Liu, Wentao
    Li, Xin
    Zhu, Zhi
    Huo, Pengwei
    Yan, Yongsheng
    APPLIED SURFACE SCIENCE, 2022, 577
  • [5] Boron Carbon Nitride Semiconductors Decorated with CdS Nanoparticles for Photocatalytic Reduction of CO2
    Zhou, Min
    Wang, Sibo
    Yang, Pengju
    Huang, Caijin
    Wang, Xinchen
    ACS CATALYSIS, 2018, 8 (06): : 4928 - 4936
  • [6] Carbon nitride based nanoarchitectonics for nature-inspired photocatalytic CO2 reduction
    Sadanandan, Aathira M.
    Yang, Jae-Hun
    Devtade, Vidyasagar
    Singh, Gurwinder
    Dharmarajan, Nithinraj Panangattu
    Fawaz, Mohammed
    Leec, Jang Mee
    Tavakkoli, Ehsan
    Jeon, Chung-Hwan
    Kumar, Prashant
    Vinu, Ajayan
    PROGRESS IN MATERIALS SCIENCE, 2024, 142
  • [7] Enhanced Photocatalytic CO2 Reduction by Amine Functionalization of Graphitic Carbon Nitride
    Lachance, Robert
    Adeli, Babak
    Taghipour, Fariborz
    SOLAR RRL, 2024, 8 (07)
  • [8] Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light
    Zhao, Guixia
    Pang, Hong
    Liu, Guigao
    Li, Peng
    Liu, Huimin
    Zhang, Huabin
    Shi, Li
    Ye, Jinhua
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 200 : 141 - 149
  • [9] Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid
    Qin, Jiani
    Wang, Sibo
    Ren, He
    Hou, Yidong
    Wang, Xinchen
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 179 : 1 - 8
  • [10] Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride
    Sun, Zhuxing
    Fischer, Julia Melisande Theresa Agatha
    Li, Qian
    Hu, Jing
    Tang, Qijun
    Wang, Haiqiang
    Wu, Zhongbiao
    Hankel, Marlies
    Searles, Debra J.
    Wang, Lianzhou
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 216 : 146 - 155