Numerical stable method for the analysis of Bloch waves in a general one-dimensional photonic crystal cavity

被引:3
作者
Hsueh, W. J. [1 ]
Lin, J. C. [1 ]
机构
[1] Natl Taiwan Univ, Dept Engn Sci, Taipei 10660, Taiwan
关键词
D O I
10.1364/JOSAB.24.002249
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a numerical stable method to accurately solve band structures and the eigenvalues of a multilayer-basis photonic crystal cavity. We derive a set of band-edge equations to determine the band structures rather than use the cosine of the Bloch phase, which is traditionally used but may induce numerical instability. Moreover, two novel formulas are proposed to solve the eigenvalues for the cavity modes. The eigenvalues solved by the method are accurate without including the spurious solutions. Thus, it is not required to eliminate the spurious solutions from the results. Finally, numerical examples of binary and Fibonacci multilayers in each cell are studied to demonstrate that this method has better numerical stability in computing the band structure and cavity modes than traditional methods. (c) 2007 Optical Society of America.
引用
收藏
页码:2249 / 2258
页数:10
相关论文
共 38 条
[1]  
Berman P.R, 1994, CAVITY QUANTUM ELECT
[2]   Optical necklace states in Anderson localized 1D systems [J].
Bertolotti, J ;
Gottardo, S ;
Wiersma, DS ;
Ghulinyan, M ;
Pavesi, L .
PHYSICAL REVIEW LETTERS, 2005, 94 (11)
[3]   Infinite chain of N different deltas:: A simple model for a quantum wire [J].
Cerveró, JM ;
Rodríguez, A .
EUROPEAN PHYSICAL JOURNAL B, 2002, 30 (02) :239-251
[4]   Light transport through the band-edge states of Fibonacci quasicrystals [J].
Dal Negro, L ;
Oton, CJ ;
Gaburro, Z ;
Pavesi, L ;
Johnson, P ;
Lagendijk, A ;
Righini, R ;
Colocci, M ;
Wiersma, DS .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4-055501
[5]   Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures [J].
Erementchouk, MV ;
Deych, LI ;
Lisyansky, AA .
PHYSICAL REVIEW B, 2005, 71 (23)
[6]   Wave propagation in one-dimensional photonic crystals [J].
Felbacq, D ;
Guizal, B ;
Zolla, F .
OPTICS COMMUNICATIONS, 1998, 152 (1-3) :119-126
[7]   A dielectric omnidirectional reflector [J].
Fink, Y ;
Winn, JN ;
Fan, SH ;
Chen, CP ;
Michel, J ;
Joannopoulos, JD ;
Thomas, EL .
SCIENCE, 1998, 282 (5394) :1679-1682
[8]   Photonic-bandgap microcavities in optical waveguides [J].
Foresi, JS ;
Villeneuve, PR ;
Ferrera, J ;
Thoen, ER ;
Steinmeyer, G ;
Fan, S ;
Joannopoulos, JD ;
Kimerling, LC ;
Smith, HI ;
Ippen, EP .
NATURE, 1997, 390 (6656) :143-145
[9]   Band-structure properties of one-dimensional photonic crystals under the formalism of equivalent systems [J].
Gaspar-Armenta, JA ;
Villa, F .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (02) :405-412
[10]   Stable and accurate method for modal analysis of multilayer waveguides using a graph approach [J].
Hsueh, Wen-Jeng ;
Lin, Jhih-Chang .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (03) :825-830