Electrodeposition on Nanofibrous Polymer Scaffolds: Rapid Mineralization, Tunable Calcium Phosphate Composition and Topography

被引:85
作者
He, Chuanglong [1 ,3 ]
Xiao, Guiyong [1 ]
Jin, Xiaobing [1 ]
Sun, Chenghui [1 ]
Ma, Peter X. [1 ,2 ]
机构
[1] Univ Michigan, Dept Biol & Mat Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biomed Engn, Macromol Sci & Engn Ctr, Ann Arbor, MI 48109 USA
[3] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Coll Chem & Chem Engn & Biol Engn, Shanghai 201620, Peoples R China
基金
美国国家卫生研究院;
关键词
ELECTROCHEMICAL DEPOSITION; COATINGS; HYDROXYAPATITE; TITANIUM; ELECTROCRYSTALLIZATION; DIFFERENTIATION; NANOCOMPOSITES; BIOMATERIALS; ELECTROLYTE; FABRICATION;
D O I
10.1002/adfm.201000993
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A straightforward, fast and versatile technique to fabricate mineralized nanofibrous polymer scaffolds for bone regeneration is developed. Nanofibrous poly(L-lactic acid) scaffolds are fabricated using both electrospinning and phase separation techniques. An electrodeposition process is designed to deposit calcium phosphate on the nanofibrous scaffolds. Such scaffolds contain a high quality mineral coating on the fiber surface and have surface topography and chemical composition that are tunable by varying the processing parameters. These scaffolds can mimic the composition and structure of the natural bone extracellular matrix and provide a more biocompatible interface for bone regeneration.
引用
收藏
页码:3568 / 3576
页数:9
相关论文
共 45 条
[1]   Electrocrystallization of nanocrystallite calcium phosphate coatings on titanium substrate at different current densities [J].
Abdel-Aal, E. A. ;
Dietrich, D. ;
Steinhaeuser, S. ;
Wielage, B. .
SURFACE & COATINGS TECHNOLOGY, 2008, 202 (24) :5895-5900
[2]   Progress in the Field of Electrospinning for Tissue Engineering Applications [J].
Agarwal, Seema ;
Wendorff, Joachim H. ;
Greiner, Andreas .
ADVANCED MATERIALS, 2009, 21 (32-33) :3343-3351
[3]   Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds [J].
Chen, Jinglu ;
Chu, Benjamin ;
Hsiao, Benjamin S. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 79A (02) :307-317
[4]   The simulation of the electrochemical cathodic Ca-P deposition process [J].
Chen, Shaolin ;
Liu, Wenlong ;
Huang, Zhijuan ;
Liu, Xiaoguang ;
Zhang, Qiyi ;
Lu, Xiong .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2009, 29 (01) :108-114
[5]   Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy [J].
Cheng, XL ;
Filiaggi, M ;
Roscoe, SG .
BIOMATERIALS, 2004, 25 (23) :5395-5403
[6]   In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers [J].
Cui, Wenguo ;
Li, Xiaohong ;
Zhou, Shaobing ;
Weng, Jie .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 82A (04) :831-841
[7]   ELECTROPHORETIC DEPOSITION OF CALCIUM PHOSPHATES FROM NONAQUEOUS MEDIA [J].
DAMODARAN, R ;
MOUDGIL, BM .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1993, 80 (2-3) :191-195
[8]   Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength [J].
Deligianni, DD ;
Katsala, ND ;
Koutsoukos, PG ;
Missirlis, YF .
BIOMATERIALS, 2001, 22 (01) :87-96
[9]   Chemical and topographical influence of hydroxyapatite and β-tricalcium phosphate surfaces on human osteoblastic cell behavior [J].
dos Santos, E. A. ;
Farina, M. ;
Soares, G. A. ;
Anselme, K. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 89A (02) :510-520
[10]   Characterization of electrodeposited calcium phosphate coatings by complementary scanning electron microscopy and scanning-transmission electron microscopy associated to X-ray microanalysis [J].
Dumelié, N ;
Benhayoune , H ;
Rousse-Bertrand, C ;
Bouthors, S ;
Perchet, A ;
Wortham, L ;
Douglade, J ;
Laurent-Maquin, D ;
Balossier, G .
THIN SOLID FILMS, 2005, 492 (1-2) :131-139