Degradation studies and mechanical properties of treated curaua fibers and microcrystalline cellulose in composites with polyamide 6

被引:15
作者
de Melo, Renato P. [1 ]
Marques, Maria F. V. [1 ]
Navard, Patrick [2 ]
Duque, Norman P. [3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Macromol Prof Eloisa Mano, Ave Horacio Macedo 2030, BR-21941598 Rio De Janeiro, Brazil
[2] PLS Res Univ, Mines Paristech, CEMEF Ctr Mise Forme Mat, Paris, France
[3] Ctr Tech Velizy, PSA Peugeot Citroen, Velizy Villacoublay, France
关键词
Composite; natural fibers; fiber/matrix bond; mechanical properties; degradation; NATURAL FIBER; THERMAL-DEGRADATION; ALKALI TREATMENT; MORPHOLOGY; GLASS;
D O I
10.1177/0021998317690446
中图分类号
TB33 [复合材料];
学科分类号
摘要
The use of lignocellulosic fibers derived from renewable resources as a reinforcing phase in polymeric matrix composites provides positive environmental benefits with respect to ultimate disposability and raw material use. Despite the attractive properties, lignocellulosic fillers are used only to a limited extent in industrial practice due to the restriction to 200 degrees C in composites processing temperatures. Lignocellulosic materials start to degrade near 230 degrees C. This limits the type of thermoplastics that can be used in association with polysaccharide fillers. To overcome these disadvantages, chemical treatments, i.e. alkaline treatment, were applied to curaua fibers to improve the thermal properties. Colorimetry was employed to evaluate the extension of darkening of composites prepared with treated curaua and Avicel. Fourier-transform infrared spectra of polyamide composites with treated curaua showed no differences when compared to pure polyamide. Moreover, no changes in molar mass were observed in microcrystalline cellulose processed in different temperatures.
引用
收藏
页码:3481 / 3489
页数:9
相关论文
共 30 条
[1]   Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites [J].
Alvarez, VA ;
Vázquez, A .
POLYMER DEGRADATION AND STABILITY, 2004, 84 (01) :13-21
[2]   Microcrystalline cellulose powders: structure, surface features and water sorption capability [J].
Ardizzone, S ;
Dioguardi, FS ;
Mussini, T ;
Mussini, PR ;
Rondinini, S ;
Vercelli, B ;
Vertova, A .
CELLULOSE, 1999, 6 (01) :57-69
[3]   Effect of compatibilization on thermal degradation kinetics of HDPE-based composites containing cellulose reinforcements [J].
Avella, Maurizio ;
Avolio, Roberto ;
Bonadies, Irene ;
Carfagna, Cosimo ;
Errico, Maria Emanuela ;
Gentile, Gennaro .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2010, 102 (03) :975-982
[4]   Effect of cellulose structure and morphology on the properties of poly(butylene succinate-co-butylene adipate) biocomposites [J].
Avolio, R. ;
Graziano, V. ;
Pereira, Y. D. F. ;
Cocca, M. ;
Gentile, G. ;
Errico, M. E. ;
Ambrogi, V. ;
Avella, M. .
CARBOHYDRATE POLYMERS, 2015, 133 :408-420
[5]   A multitechnique approach to assess the effect of ball milling on cellulose [J].
Avolio, R. ;
BonadiesA, I. ;
Capitani, D. ;
Errico, M. E. ;
Gentile, G. ;
Avella, M. .
CARBOHYDRATE POLYMERS, 2012, 87 (01) :265-273
[6]  
Battista OA, 1971, SURF COLLOID SCI, P244
[7]   Natural fiber eco-composites [J].
Bogoeva-Gaceva, G. ;
Avella, M. ;
Malinconico, M. ;
Buzarovska, A. ;
Grozdanov, A. ;
Gentile, G. ;
Errico, M. E. .
POLYMER COMPOSITES, 2007, 28 (01) :98-107
[8]   Amorphized cellulose as filler in biocomposites based on poly(ε-caprolactone) [J].
Cocca, M. ;
Avolio, R. ;
Gentile, G. ;
Di Pace, E. ;
Errico, M. E. ;
Avella, M. .
CARBOHYDRATE POLYMERS, 2015, 118 :170-182
[9]   Cellulose nanofibers from curaua fibers [J].
Correa, Ana Carolina ;
Teixeira, Eliangela de Morais ;
Pessan, Luiz Antonio ;
Capparelli Mattoso, Luiz Henrique .
CELLULOSE, 2010, 17 (06) :1183-1192
[10]   The Young's modulus of a microcrystalline cellulose [J].
Eichhorn, SJ ;
Young, RJ .
CELLULOSE, 2001, 8 (03) :197-207