Thermal Conductance Engineering for High-Speed TES Microcalorimeters

被引:29
作者
Hays-Wehle, J. P. [1 ]
Schmidt, D. R. [1 ]
Ullom, J. N. [1 ]
Swetz, D. S. [1 ]
机构
[1] NIST, 325 Broadway MS 686-02, Boulder, CO 80305 USA
关键词
Thermal conductance; TES; Membrane; TRANSITION-EDGE SENSORS;
D O I
10.1007/s10909-015-1416-5
中图分类号
O59 [应用物理学];
学科分类号
摘要
Many current and future applications for superconducting transition-edge sensor (TES) microcalorimeters require significantly faster pulse response than is currently available. X-ray spectroscopy experiments at next-generation synchrotron light sources need to successfully capture very large fluxes of photons, while detectors at free-electron laser facilities need pulse response fast enough to match repetition rates of the source. Additionally, neutrino endpoint experiments such as HOLMES need enormous statistics, yet are extremely sensitive to pile-up effects that can distort spectra. These issues can be mitigated only by fast rising and falling edges. To address these needs, we have designed high-speed TES detectors with novel geometric enhancements to increase the thermal conductance of pixels suspended on silicon nitride membranes. This paper shows that the thermal conductivity can be precisely engineered to values spanning over an order of magnitude to achieve fast thermal relaxation times tailored to the relevant applications. Using these pixel prototypes, we demonstrate decay time constants faster than 100 s, while still maintaining spectral resolution of 3 eV FWHM at 1.5 keV. This paper also discusses the trade-offs inherent in reducing the pixel time constant, such as increased bias current leading to degradation in energy resolution, and potential modifications to improve performance.
引用
收藏
页码:492 / 497
页数:6
相关论文
共 12 条
[1]   Algorithms for Identification of Nearly-Coincident Events in Calorimetric Sensors [J].
Alpert, B. ;
Ferri, E. ;
Bennett, D. ;
Faverzani, M. ;
Fowler, J. ;
Giachero, A. ;
Hays-Wehle, J. ;
Maino, M. ;
Nucciotti, A. ;
Puiu, A. ;
Swetz, D. ;
Ullom, J. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) :263-273
[2]  
Alpert B, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3329-5
[3]   A Two-Fluid Model for the Transition Shape in Transition-Edge Sensors [J].
Bennett, D. A. ;
Swetz, D. S. ;
Horansky, R. D. ;
Schmidt, D. R. ;
Ullom, J. N. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 167 (3-4) :102-107
[4]   Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors [J].
Doriese, W. B. ;
Morgan, K. M. ;
Bennett, D. A. ;
Denison, E. V. ;
Fitzgerald, C. P. ;
Fowler, J. W. ;
Gard, J. D. ;
Hays-Wehle, J. P. ;
Hilton, G. C. ;
Irwin, K. D. ;
Joe, Y. I. ;
Mates, J. A. B. ;
O'Neil, G. C. ;
Reintsema, C. D. ;
Robbins, N. O. ;
Schmidt, D. R. ;
Swetz, D. S. ;
Tatsuno, H. ;
Vale, L. R. ;
Ullom, J. N. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) :389-395
[5]   Direct Measurement of the Mass Difference of 163Ho and 163Dy Solves the Q-Value Puzzle for the Neutrino Mass Determination [J].
Eliseev, S. ;
Blaum, K. ;
Block, M. ;
Chenmarev, S. ;
Dorrer, H. ;
Duellmann, Ch. E. ;
Enss, C. ;
Filianin, P. E. ;
Gastaldo, L. ;
Goncharov, M. ;
Koester, U. ;
Lautenschlaeger, F. ;
Novikov, Yu. N. ;
Rischka, A. ;
Schuessler, R. X. ;
Schweikhard, L. ;
Tuerler, A. .
PHYSICAL REVIEW LETTERS, 2015, 115 (06)
[6]  
Irwin KD, 2005, TOP APPL PHYS, V99, P63
[7]   Low-noise transition edge sensor (TES) for SAFARI instrument on SPICA [J].
Khosropanah, P. ;
Dirks, B. ;
Parra-Borderias, M. ;
Ridder, M. ;
Hijmering, R. ;
van der Kuur, J. ;
Gottardi, L. ;
Bruijn, M. ;
Popescu, M. ;
Gao, J. R. ;
Hoevers, H. .
MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY V, 2010, 7741
[8]  
Mates J. A. B., 2010, THESIS
[9]   High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array [J].
Noroozian, Omid ;
Mates, John A. B. ;
Bennett, Douglas A. ;
Brevik, Justus A. ;
Fowler, Joseph W. ;
Gao, Jiansong ;
Hilton, Gene C. ;
Horansky, Robert D. ;
Irwin, Kent D. ;
Kang, Zhao ;
Schmidt, Daniel R. ;
Vale, Leila R. ;
Ullom, Joel N. .
APPLIED PHYSICS LETTERS, 2013, 103 (20)
[10]  
Ullom J. N., 2014, Synchrotron Radiation News, V27, P24, DOI 10.1080/08940886.2014.930806