Predicting the global far-infrared SED of galaxies via machine learning techniques

被引:11
|
作者
Dobbels, W. [1 ]
Baes, M. [1 ]
Viaene, S. [1 ,2 ]
Bianchi, S. [3 ]
Davies, J. I. [4 ]
Casasola, V. [3 ,5 ]
Clark, C. J. R. [6 ]
Fritz, J. [7 ]
Galametz, M. [8 ]
Galliano, F. [8 ]
Mosenkov, A. [1 ,9 ,10 ]
Nersesian, A. [1 ,11 ,12 ]
Trcka, A. [1 ]
机构
[1] Univ Ghent, Sterrenkundig Observ, Krijgslaan 281, B-9000 Ghent, Belgium
[2] Univ Hertfordshire, Ctr Astrophys Res, Coll Lane, Hatfield AL10 9AB, Herts, England
[3] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
[4] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales
[5] INAF Ist Radioastron, Via P Gobetti 101, I-4019 Bologna, Italy
[6] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA
[7] UNAM, Inst Radioastron & Astrofis, Campus Morelia,AP 3-72, Morelia 58089, Michoacan, Mexico
[8] Univ Paris Diderot, Univ Paris Saclay, Sorbonne Paris Cite, AIM,CEA,CNRS, F-91191 Gif Sur Yvette, France
[9] RAS, Cent Astron Observ, Pulkovskoye Chaussee 65-1, St Petersburg 196140, Russia
[10] St Petersburg State Univ, Univ Skij Pr 28, St Petersburg 198504, Stary Peterhof, Russia
[11] Natl Observ Athens, Inst Astron Astrophys Space Applicat & Remote Sen, Athens 15236, Greece
[12] Univ Athens, Fac Phys, Dept Astrophys Astron & Mech, Athens 15784, Greece
关键词
galaxies; photometry; ISM; infrared; SPECTRAL ENERGY-DISTRIBUTIONS; INTERSTELLAR DUST; SKY SURVEY; EVOLUTION; ULTRAVIOLET; EMISSION; EXPLORER; MISSION; MODEL; MAPS;
D O I
10.1051/0004-6361/201936695
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Dust plays an important role in shaping a galaxy's spectral energy distribution (SED). It absorbs ultraviolet (UV) to near-infrared radiation and re-emits this energy in the far-infrared (FIR). The FIR is essential to understand dust in galaxies. However, deep FIR observations require a space mission, none of which are still active today. Aims. We aim to infer the FIR emission across six Herschel bands, along with dust luminosity, mass, and effective temperature, based on the available UV to mid-infrared (MIR) observations. We also want to estimate the uncertainties of these predictions, compare our method to energy balance SED fitting, and determine possible limitations of the model. Methods. We propose a machine learning framework to predict the FIR fluxes from 14 UV-MIR broadband fluxes. We used a low redshift sample by combining DustPedia and H-ATLAS, and extracted Bayesian flux posteriors through SED fitting. We trained shallow neural networks to predict the far-infrared fluxes, uncertainties, and dust properties. We evaluated them on a test set using a root mean square error (RMSE) in log-space. Results. Our results (RMSE = 0.19 dex) significantly outperform UV-MIR energy balance SED fitting (RMSE = 0.38 dex), and are inherently unbiased. We can identify when the predictions are off, for example when the input has large uncertainties on WISE 22 mu m, or when the input does not resemble the training set. Conclusions. The galaxies for which we have UV-FIR observations can be used as a blueprint for galaxies that lack FIR data. This results in a "virtual FIR telescope", which can be applied to large optical-MIR galaxy samples. This helps bridge the gap until the next FIR mission.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Predicting far-infrared maps of galaxies via machine learning techniques
    Dobbels, Wouter
    Baes, Maarten
    ASTRONOMY & ASTROPHYSICS, 2021, 655
  • [2] Far-infrared emission from E and E/SO galaxies
    Bregman, JN
    Snider, BA
    Grego, L
    Cox, CV
    ASTROPHYSICAL JOURNAL, 1998, 499 (02) : 670 - 676
  • [3] THE COMPACTNESS OF FAR-INFRARED BRIGHT GALAXIES
    WANG, Z
    HELOU, G
    ASTROPHYSICAL JOURNAL, 1992, 398 (01) : L33 - L36
  • [4] FAR-INFRARED PROPERTIES OF EARLY-TYPE GALAXIES
    MAZZEI, P
    DEZOTTI, G
    ASTROPHYSICAL JOURNAL, 1994, 426 (01) : 97 - 104
  • [5] Optical and far-infrared emission of IRAS Seyfert galaxies
    Bonatto, CJ
    Pastoriza, MG
    ASTROPHYSICAL JOURNAL, 1997, 486 (01) : 132 - 146
  • [6] Clustering of far-infrared galaxies in the AKARI All-Sky Survey North
    Pollo, A.
    Takeuchi, T. T.
    Solarz, A.
    Rybka, P.
    Suzuki, T. L.
    Pepiak, A.
    Oyabu, S.
    EARTH PLANETS AND SPACE, 2013, 65 (10): : 1109 - 1116
  • [7] INTEGRATED FAR-INFRARED BACKGROUND FROM GALAXIES
    WANG, BQ
    ASTROPHYSICAL JOURNAL, 1991, 374 (02) : 465 - 474
  • [8] FAR-INFRARED LUMINOSITY FUNCTIONS OF NORMAL GALAXIES
    ISOBE, T
    FEIGELSON, ED
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1992, 79 (02) : 197 - 211
  • [9] SEARCHING FOR A FAR-INFRARED ENHANCEMENT IN COMPACT-GROUPS OF GALAXIES
    SULENTIC, JW
    RABACA, DFD
    ASTROPHYSICAL JOURNAL, 1993, 410 (02) : 520 - 525
  • [10] Calibration of mid- to far-infrared spectral lines in galaxies
    Mordini, Sabrina
    Spinoglio, Luigi
    Fernandez-Ontiveros, Juan Antonio
    ASTRONOMY & ASTROPHYSICS, 2021, 653