Conformal Diffeomorphisms of Gradient Ricci Solitons and Generalized Quasi-Einstein Manifolds

被引:18
作者
Jauregui, Jeffrey L. [1 ]
Wylie, William [2 ]
机构
[1] David Rittenhouse Lab, Dept Math, Philadelphia, PA 19104 USA
[2] Syracuse Univ, Dept Math, Syracuse, NY 13210 USA
基金
美国国家科学基金会;
关键词
Conformal diffeomorphism; Conformal Killing field; Generalized quasi Einstein space; Gradient Ricci soliton; Warped product; SPACES; CURVATURE; THEOREM; VOLUME;
D O I
10.1007/s12220-013-9442-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend some well-known rigidity results for conformal changes of Einstein metrics to the class of generalized quasi-Einstein (GQE) metrics, which includes gradient Ricci solitons. In order to do so, we introduce the notions of conformal diffeomorphisms and vector fields that preserve a GQE structure. We show that a complete GQE metric admits a structure-preserving, non-homothetic complete conformal vector field if and only if it is a round sphere. We also classify the structure-preserving conformal diffeomorphisms. In the compact case, if a GQE metric admits a structure-preserving, non-homothetic conformal diffeomorphism, then the metric is conformal to the sphere, and isometric to the sphere in the case of a gradient Ricci soliton. In the complete case, the only structure-preserving non-homothetic conformal diffeomorphisms from a shrinking or steady gradient Ricci soliton to another soliton are the conformal transformations of spheres and inverse stereographic projection.
引用
收藏
页码:668 / 708
页数:41
相关论文
共 50 条
  • [21] Quasi-Einstein manifolds with structure of warped product
    Correia, Paula
    Pina, Romildo
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 72
  • [22] REMARKS ON COMPACT QUASI-EINSTEIN MANIFOLDS WITH BOUNDARY
    Diogenes, R.
    Gadelha, T.
    Ribeiro Jr, E.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (01) : 351 - 363
  • [23] Locally conformally flat quasi-Einstein manifolds
    Catino, Giovanni
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    Rimoldi, Michele
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 675 : 181 - 189
  • [24] Bach-flat noncompact steady quasi-Einstein manifolds
    Ranieri, M.
    Ribeiro, E., Jr.
    [J]. ARCHIV DER MATHEMATIK, 2017, 108 (05) : 507 - 519
  • [25] Conformal Vector Fields and Conformal Ricci Solitons on α-Kenmotsu Manifolds
    Falcitelli, Maria
    Sarkar, Avijit
    Halder, Suparna
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [26] η-RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON δ- LORENTZIAN TRANS-SASAKIAN MANIFOLDS
    Siddiqi, Mohd Danish
    Akyol, Mehmet Akif
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (03): : 529 - 545
  • [27] Gradient ricci solitons with a conformal vector field
    Sharma R.
    [J]. Journal of Geometry, 2018, 109 (2) : 1 - 7
  • [28] GRADIENT RICCI SOLITONS ON ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    De, Uday Chand
    Liu, Ximin
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 227 - 235
  • [29] Locally conformally flat Lorentzian quasi-Einstein manifolds
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 173 (02): : 175 - 186
  • [30] CLASSIFICATION OF STEADY GRADIENT RICCI SOLITONS ON TWO-MANIFOLDS
    Bercu, Gabriel
    Postolache, Mihai
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (05)