Conformal Diffeomorphisms of Gradient Ricci Solitons and Generalized Quasi-Einstein Manifolds

被引:18
|
作者
Jauregui, Jeffrey L. [1 ]
Wylie, William [2 ]
机构
[1] David Rittenhouse Lab, Dept Math, Philadelphia, PA 19104 USA
[2] Syracuse Univ, Dept Math, Syracuse, NY 13210 USA
基金
美国国家科学基金会;
关键词
Conformal diffeomorphism; Conformal Killing field; Generalized quasi Einstein space; Gradient Ricci soliton; Warped product; SPACES; CURVATURE; THEOREM; VOLUME;
D O I
10.1007/s12220-013-9442-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend some well-known rigidity results for conformal changes of Einstein metrics to the class of generalized quasi-Einstein (GQE) metrics, which includes gradient Ricci solitons. In order to do so, we introduce the notions of conformal diffeomorphisms and vector fields that preserve a GQE structure. We show that a complete GQE metric admits a structure-preserving, non-homothetic complete conformal vector field if and only if it is a round sphere. We also classify the structure-preserving conformal diffeomorphisms. In the compact case, if a GQE metric admits a structure-preserving, non-homothetic conformal diffeomorphism, then the metric is conformal to the sphere, and isometric to the sphere in the case of a gradient Ricci soliton. In the complete case, the only structure-preserving non-homothetic conformal diffeomorphisms from a shrinking or steady gradient Ricci soliton to another soliton are the conformal transformations of spheres and inverse stereographic projection.
引用
收藏
页码:668 / 708
页数:41
相关论文
共 50 条
  • [1] Conformal Diffeomorphisms of Gradient Ricci Solitons and Generalized Quasi-Einstein Manifolds
    Jeffrey L. Jauregui
    William Wylie
    The Journal of Geometric Analysis, 2015, 25 : 668 - 708
  • [2] Volume Growth Estimates for Ricci Solitons and Quasi-Einstein Manifolds
    Xu Cheng
    Ernani Ribeiro
    Detang Zhou
    The Journal of Geometric Analysis, 2022, 32
  • [3] Volume Growth Estimates for Ricci Solitons and Quasi-Einstein Manifolds
    Cheng, Xu
    Ribeiro, Ernani, Jr.
    Zhou, Detang
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [4] A note on gradient generalized quasi-Einstein manifolds
    Huang, Guangyue
    Zeng, Fanqi
    JOURNAL OF GEOMETRY, 2015, 106 (02) : 297 - 311
  • [5] On gradient quasi-Einstein solitons
    Wang, Lin Feng
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 : 484 - 494
  • [6] On generalized quasi-Einstein manifolds
    Mirshafeazadeh, Mir Ahmad
    Bidabad, Behroz
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (03) : 193 - 202
  • [7] On generalized quasi-Einstein manifolds
    Freitas Filho, Antonio Airton
    Tenenblat, Keti
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [8] Rigidity of Einstein manifolds and generalized quasi-Einstein manifolds
    Deng, Yi Hua
    Luo, Li Ping
    Zhou, Li Jun
    ANNALES POLONICI MATHEMATICI, 2015, 115 (03) : 235 - 240
  • [9] ON PSEUDO GENERALIZED QUASI-EINSTEIN MANIFOLDS
    Shaikh, A. A.
    Jana, Sanjib Kumar
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (01): : 9 - 23
  • [10] On the Rigidity of Generalized Quasi-Einstein Manifolds
    M. Ahmad Mirshafeazadeh
    B. Bidabad
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2029 - 2042