Graph correlated attention recurrent neural network for multivariate time series forecasting

被引:39
|
作者
Geng, Xiulin [1 ]
He, Xiaoyu [1 ]
Xu, Lingyu [1 ,2 ]
Yu, Jie [1 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
[2] Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Shanghai, Peoples R China
关键词
Multivariate time series; Feature -level attention; Graph attention; Multi -level attention; Memory ability; MODELS;
D O I
10.1016/j.ins.2022.04.045
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multivariate time series(MTS) forecasting is an urgent problem for numerous valuable applications. At present, attention-based methods can relieve recurrent neural networks' limitations in MTS forecasting that are hard to focus on key information and capture long-term dependencies, but they fail to learn the time-varying pattern based on the reli-able interaction. To reinforce the memory ability of key features across time, we propose a Graph Correlated Attention Recurrent Neural Network(GCAR). GCAR first nests Feature -level attention in the graph attention module to complement external feature representa-tions on the extraction of multi-head temporal correlations. Then Multi-level attention is designed to add target factors' impact on the selection of external correlation and achieve a fine-grained distinction of external features' contribution. To better capture different ser-ies' continuous dynamic changes, two parallel LSTMs are respectively applied to learn his-torical target series and external feature representations' temporal dependencies. Finally, a fusion gate is employed to balance their information conflicts. The performance of GCAR model is tested on 4 datasets, and results show GCAR model performs the most stable and greatest predictive accuracy as the increasing of predicted horizons compared with state-of-the-art models even if the multivariate time series present strong volatility and randomness.(c) 2022 Published by Elsevier Inc.
引用
收藏
页码:126 / 142
页数:17
相关论文
共 50 条
  • [41] A Multi-granularity Network for Time Series Forecasting on Multivariate Time Series Data
    Wang, Zongqiang
    Xian, Yan
    Wang, Guoyin
    Yu, Hong
    ROUGH SETS, IJCRS 2023, 2023, 14481 : 324 - 338
  • [42] Edge conditional node update graph neural network for multivariate time series anomaly detection
    Jo, Hayoung
    Lee, Seong-Whan
    INFORMATION SCIENCES, 2024, 679
  • [43] Neural network ensemble operators for time series forecasting
    Kourentzes, Nikolaos
    Barrow, Devon K.
    Crone, Sven F.
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (09) : 4235 - 4244
  • [44] Information-aware attention dynamic synergetic network for multivariate time series long-term forecasting
    He, Xiaoyu
    Shi, Suixiang
    Geng, Xiulin
    Xu, Lingyu
    NEUROCOMPUTING, 2022, 500 : 143 - 154
  • [45] A Neural Networks Based Method for Multivariate Time-Series Forecasting
    Li, Shaowei
    Huang, He
    Lu, Wei
    IEEE ACCESS, 2021, 9 : 63915 - 63924
  • [46] FORECASTING THE BEHAVIOR OF MULTIVARIATE TIME-SERIES USING NEURAL NETWORKS
    CHAKRABORTY, K
    MEHROTRA, K
    MOHAN, CK
    RANKA, S
    NEURAL NETWORKS, 1992, 5 (06) : 961 - 970
  • [47] STGAT-MAD : SPATIAL-TEMPORAL GRAPH ATTENTION NETWORK FOR MULTIVARIATE TIME SERIES ANOMALY DETECTION
    Zhan, Jun
    Wang, Siqi
    Ma, Xiandong
    Wu, Chengkun
    Yang, Canqun
    Zeng, Detian
    Wang, Shilin
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3568 - 3572
  • [48] Short-term load forecasting based on multivariate time series prediction and weighted neural network with random weights and kernels
    Lang, Kun
    Zhang, Mingyuan
    Yuan, Yongbo
    Yue, Xijian
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 5): : 12589 - 12597
  • [49] Time-Series Neural Network: A High-Accuracy Time-Series Forecasting Method Based on Kernel Filter and Time Attention
    Zhang, Lexin
    Wang, Ruihan
    Li, Zhuoyuan
    Li, Jiaxun
    Ge, Yichen
    Wa, Shiyun
    Huang, Sirui
    Lv, Chunli
    INFORMATION, 2023, 14 (09)
  • [50] Saliency-Aware Dual Embedded Attention Network for Multivariate Time-Series Forecasting in Information Technology Operations
    Li, Jiajia
    Tan, Feng
    He, Cheng
    Wang, Zikai
    Song, Haitao
    Hu, Pengwei
    Luo, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (03) : 4206 - 4217