Fibre-reinforced boroaluminosilicate geopolymers: A comparative study

被引:22
作者
Bagheri, Ali [1 ]
Nazari, Ali [1 ]
Sanjayan, Jay G. [1 ]
机构
[1] Swinburne Univ Technol, Fac Sci Engn & Technol, Ctr Sustainable Infrastruct, Hawthorn, Vic 3122, Australia
关键词
Fibres; Boroaluminosilicate; Mechanical properties; Alkali-activated; Strength; ASH-BASED GEOPOLYMERS; FLY-ASH; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; FLEXURAL STRENGTH; ALKALINE-SOLUTION; SETTING TIME; WORKABILITY; METAKAOLIN; CERAMICS;
D O I
10.1016/j.ceramint.2018.06.085
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper investigates the effect of fibres on the physical and mechanical behaviour of boroaluminosilicate geopolymers (BASG) compared to conventional aluminosilicate binders. The use of various types of fibres by the means of reinforcing geopolymers against flexural loads is very common. In this work, fly ash and ground granulated blast furnace slag (GGBS) are utilised as raw materials to generate geopolymer specimens. Different alkaline solutions comprising sodium hydroxide, sodium silicate, and borax are prepared to activate precursors. The sodium silicate solution is substituted with borax by 30 wt% and 70 wt% in order to produce fly ash and slag-based BASG respectively. Steel and polymer fibres are employed in the mixtures for reinforcement. Three-point bending and mini slump tests are conducted for assessing the flexural strength, elastic modulus, toughness, and flow of geopolymer specimens. A pair plotting interpretation is also used in order to illustrate the patterns. The obtained results indicate that the fly ash-based BASG mortar shows superior flexural strength to the GGBS-based BASG mortar. The flexural strength of fly ash-made aluminosilicate geopolymer declines from 7.3 MPa to 6.4 MPa with an increase in the content of steel fibres from 1% to 2%. Inversely, raising the percentage of steel fibres in the fly ash-based BASG mortar caused a slight growth in the flexural strength of specimens. The polypropylene fibres, when added sufficiently, play a significant role in improving the toughness of fly ash-based BASG and slag-based aluminosilicate mixtures, more than 0.8 and 0.7 J surge in the toughness respectively. In addition, the polypropylene and steel fibres perform well in improving the elastic modulus of slag-based BASG and fly ash-based aluminosilicate binders. While keeping the water to binder ratio constant, introducing the steel fibre increased the flow of fly ash-based geopolymers. Nonetheless, the polymer fibres declined the flow of mortars.
引用
收藏
页码:16599 / 16605
页数:7
相关论文
共 50 条
  • [21] Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures
    Mazloom, Moosa
    Mirzamohammadi, Sajjad
    MAGAZINE OF CONCRETE RESEARCH, 2021, 73 (14) : 701 - 713
  • [22] Evaluation of hybrid fibre-reinforced concrete slabs in terms of punching shear
    Labib, Wafa Abdelmajeed
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 260
  • [23] Experimental study of the mechanical properties of basalt fibre-reinforced concrete at elevated temperatures
    Lu, Limin
    Han, Fei
    Qin, Yuwen
    Wu, Shaohua
    Yuan, Guanglin
    Zhao, Qingli
    Doh, Jeung-Hwan
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2022, 26 (15) : 7586 - 7600
  • [24] COMPARATIVE STUDY ON COMPRESSIVE | STRENGTH OF FIBRE-REINFORCED CONCRETE MADE WITH INDUSTRIAL HYBRID FIBRE AND NATURAL WASTE FIBRE
    Sani, Mohd Syahrul Hisyam Mohd
    Muftah, Fadhluhartini
    Muda, Mohd Fakri
    Ho, Lanh Si
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2022, 17 (06): : 3815 - 3833
  • [25] Contribution of Interfacial Bonding towards Geopolymers Properties in Geopolymers Reinforced Fibers: A Review
    Yazid, Muhd Hafizuddin
    Faris, Meor Ahmad
    Abdullah, Mohd Mustafa Al Bakri
    Nabialek, Marcin
    Abd Rahim, Shayfull Zamree
    Salleh, Mohd Arif Anuar Mohd
    Kheimi, Marwan
    Sandu, Andrei Victor
    Rylski, Adam
    Jez, Bartlomiej
    MATERIALS, 2022, 15 (04)
  • [26] Mechanical Properties of Macro Polypropylene Fibre-Reinforced Concrete
    Abousnina, Rajab
    Premasiri, Sachindra
    Anise, Vilive
    Lokuge, Weena
    Vimonsatit, Vanissorn
    Ferdous, Wahid
    Alajarmeh, Omar
    POLYMERS, 2021, 13 (23)
  • [27] Shear performance of fibre-reinforced seawater sea-sand concrete - fibre hybridization and synergy effects
    Mashayekhi, Amirhesam
    Hassanli, Reza
    Zhuge, Yan
    Ma, Xing
    Chow, Christopher W. K.
    Bazli, Milad
    Manalo, Allan
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 472
  • [28] Flexural fatigue analysis of hybrid fibre-reinforced concrete
    Bajaj, Vineet
    Singh, Surinder Pal
    Singh, Amrit Pal
    Kaushik, Surendra Kumar
    MAGAZINE OF CONCRETE RESEARCH, 2012, 64 (04) : 361 - 373
  • [29] Flexural Behaviour of Hybrid Fibre-Reinforced Ternary Blend Geopolymer Concrete Beams
    Kumar, Veerappan Sathish
    Ganesan, Namasivayam
    Indira, Pookattu Vattarambath
    Murali, Gunasekaran
    Vatin, Nikolai Ivanovich
    SUSTAINABILITY, 2022, 14 (10)
  • [30] Hybrid Fibre-Reinforced Cement Composite
    Silva, E. R.
    Ferreira, H. E.
    Coelho, J. F. J.
    Bordado, J. C.
    ADVANCED MATERIALS FORUM VI, PTS 1 AND 2, 2013, 730-732 : 343 - +