Lewis-Riesenfeld phases and Berry phases for the harmonic oscillator with time-dependent frequency and boundary conditions

被引:3
作者
Li, L [1 ]
Li, BZ
机构
[1] Sichuan Normal Univ, Dept Phys, Chengdu 610066, Peoples R China
[2] Sichuan Univ, Dept Phys, Chengdu 610065, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China
[4] Chinese Acad Sci, Ctr Condensed Matter Phys, Beijing 100080, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2003年 / 17卷 / 10期
关键词
Lewis-Riesenfeld phase; Berry phase; quantum harmonic oscillator with time-dependent; frequency; moving boundary;
D O I
10.1142/S0217979203018223
中图分类号
O59 [应用物理学];
学科分类号
摘要
We use Lewis and Riesenfeld's quantum invariant theory to calculate the Lewis-Riesenfeld phases for a time-dependent frequency harmonic oscillator that is confined between a fixed boundary and a moving one. We also discuss the Berry phase for the system with a sinusoidally oscillating boundary.
引用
收藏
页码:2045 / 2052
页数:8
相关论文
共 17 条
  • [1] Lewis-Riesenfeld phases and Berry phases in the quantum system of time-dependent harmonic oscillator with a moving boundary
    Li, L
    Li, BZ
    Liang, JQ
    ACTA PHYSICA SINICA, 2001, 50 (11) : 2077 - 2082
  • [2] Lewis and berry phases for a gravitational wave interacting with a quantum harmonic oscillator
    Sen, Soham
    Dutta, Manjari
    Gangopadhyay, Sunandan
    PHYSICA SCRIPTA, 2024, 99 (01)
  • [3] Berry phase in a quantum system with time-dependent boundary conditions
    Wang, An-Ling
    Liu, Fu-Ping
    Yu, Zhao-Xian
    MODERN PHYSICS LETTERS B, 2014, 28 (15):
  • [4] Berry phases for the L-S coupled system in a time-dependent magnetic field
    Yan, FL
    Yang, LG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (05) : 527 - 530
  • [5] Quantum harmonic oscillator with time-dependent mass
    Ramos-Prieto, I
    Espinosa-Zuniga, A.
    Fernandez-Guasti, M.
    Moya-Cessa, H. M.
    MODERN PHYSICS LETTERS B, 2018, 32 (20):
  • [6] Correspondences between quantum and classical orbits Berry phases and Hannay angles for harmonic oscillator system
    Xin Jun-Li
    Shen Jun-Xia
    ACTA PHYSICA SINICA, 2015, 64 (24)
  • [7] On Noether's theorem for the invariant of the time-dependent harmonic oscillator
    Abe, Sumiyoshi
    Itto, Yuichi
    Matsunaga, Mamoru
    EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (06) : 1337 - 1343
  • [8] Efficient algebraic solution for a time-dependent quantum harmonic oscillator
    Tibaduiza, Daniel M.
    Pires, Luis
    Rego, Andreson L. C.
    Szilard, Daniela
    Zarro, Carlos
    Farina, Carlos
    PHYSICA SCRIPTA, 2020, 95 (10)
  • [9] Quantum tunneling effect of a time-dependent inverted harmonic oscillator
    Guo, Guang-Jie
    Ren, Zhong-Zhou
    Ju, Guo-Xing
    Guo, Xiao-Yong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (18)
  • [10] The initial value problem method for time-dependent harmonic oscillator
    Pepore, Surarit
    REVISTA MEXICANA DE FISICA, 2017, 63 (05) : 461 - 465