Square on Deterministic, Alternating, and Boolean Finite Automata

被引:2
作者
Krajnakova, Ivana [1 ]
Jiraskova, Galina [1 ]
机构
[1] Slovak Acad Sci, Math Inst, Gresakova 6, Kosice 04001, Slovakia
来源
DESCRIPTIONAL COMPLEXITY OF FORMAL SYSTEMS, DCFS 2017 | 2017年 / 10316卷
关键词
REGULAR LANGUAGES;
D O I
10.1007/978-3-319-60252-3_17
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigate the state complexity of the square operation on languages represented by deterministic, alternating, and Boolean automata. For each k such that 1 <= k <= n - 2, we describe a binary language accepted by an n-state DFA with k final states meeting the upper bound n2(n) - k2(n-1) on the state complexity of its square. We show that in the case of k = n-1, the corresponding upper bound cannot be met. Using the DFA witness for square with 2(n) states where half of them are final, we get the tight upper bounds on the complexity of the square operation on alternating and Boolean automata.
引用
收藏
页码:214 / 225
页数:12
相关论文
共 48 条
  • [31] Descriptional and computational complexity of finite automata-A survey
    Holzer, Markus
    Kutrib, Martin
    INFORMATION AND COMPUTATION, 2011, 209 (03) : 456 - 470
  • [32] Promise problems solved by quantum and classical finite automata
    Zheng, Shenggen
    Li, Lvzhou
    Qiu, Daowen
    Gruska, Jozef
    THEORETICAL COMPUTER SCIENCE, 2017, 666 : 48 - 64
  • [33] ON THE STATE COMPLEXITY OF SEMI-QUANTUM FINITE AUTOMATA
    Zheng, Shenggen
    Gruska, Jozef
    Qiu, Daowen
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2014, 48 (02): : 187 - 207
  • [34] Quantum finite automata: Advances on Bertoni's ideas
    Bianchi, Maria Paola
    Mereghetti, Carlo
    Palano, Beatrice
    THEORETICAL COMPUTER SCIENCE, 2017, 664 : 39 - 53
  • [35] Lower Bound Methods for the Size of Nondeterministic Finite Automata Revisited
    Tamm, Hellis
    van der Merwe, Brink
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS (LATA 2017), 2017, 10168 : 261 - 272
  • [36] NONDETERMINISTIC FINITE AUTOMATA - RECENT RESULTS ON THE DESCRIPTIONAL AND COMPUTATIONAL COMPLEXITY
    Holzer, Markus
    Kutrib, Martin
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2009, 20 (04) : 563 - 580
  • [37] On the state complexity of operations on two-way finite automata
    Jiraskova, Galina
    Okhotin, Alexander
    INFORMATION AND COMPUTATION, 2017, 253 : 36 - 63
  • [38] Characterizations of one-way general quantum finite automata
    Li, Lvzhou
    Qiu, Daowen
    Zou, Xiangfu
    Li, Lvjun
    Wu, Lihua
    Mateus, Paulo
    THEORETICAL COMPUTER SCIENCE, 2012, 419 : 73 - 91
  • [39] A new algorithm of the state-minimization for the nondeterministic finite automata
    B. F. Melnikov
    Korean Journal of Computational & Applied Mathematics, 1999, 6 (2): : 277 - 290
  • [40] Two-way deterministic automata with two reversals are exponentially more succinct than with one reversal
    Balcerzak, Marcin
    Niwinski, Damian
    INFORMATION PROCESSING LETTERS, 2010, 110 (10) : 396 - 398