On some classical type Sobolev orthogonal polynomials

被引:4
作者
Zagorodnyuk, Sergey M. [1 ]
机构
[1] Kharkov Natl Univ, Sch Math & Comp Sci, Svobody Sq 4, UA-61022 Kharkov, Ukraine
关键词
Sobolev orthogonal polynomials; Hypergeometric polynomials; Recurrence relation; Difference equation; EQUATIONS; ZEROS;
D O I
10.1016/j.jat.2019.105337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we propose a way to construct classical type Sobolev orthogonal polynomials. We consider two families of hypergeometric polynomials: (2)F2 (-n, 1; alpha + 1, kappa + 1; x) and (3)F2(-n, n + alpha + beta + 1, 1; alpha + 1, kappa + 1; x) (alpha, beta, kappa > -1 n = 0, 1, ...), which generalize Laguerre and Jacobi polynomials, respectively. These polynomials satisfy higher-order differential equations of the following form: Ly + lambda Dy-n = 0, where L, D are linear differential operators with polynomial coefficients not depending on n. For nonnegative integer values of the parameter K these polynomials are Sobolev orthogonal polynomials with some explicitly given measures. Some basic properties of these polynomials, including recurrence relations, are obtained. Some generalizations of these polynomials are discussed as well. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 27 条
[11]   Differential equations for discrete Jacobi-Sobolev orthogonal polynomials [J].
Duran, Antonio J. ;
de la Iglesia, Manuel D. .
JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) :191-234
[12]  
Erdelyi A., 1954, B AM MATH SOC, V2
[13]  
Erdelyi A., 1953, Higher transcendental functions, VII
[14]  
Erdelyi A., 1953, Higher transcendental functions, VI
[15]  
Freud G., 1971, Orthogonal Polynomials
[16]   On the Krall-Hermite and the Krall-Bessel polynomials [J].
Grunbaum, FA ;
Haine, L ;
Horozov, E .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (19) :953-966
[17]  
Grunbaum FA, 1997, INT MATH RES NOTICES, V1997, P359
[18]  
Krall A., 2002, OPER THEOR, V133
[19]   ON PAIRS OF RELATED ORTHOGONAL POLYNOMIAL SETS [J].
KRALL, HL ;
SHEFFER, IM .
MATHEMATISCHE ZEITSCHRIFT, 1965, 86 (05) :425-&
[20]   On Sobolev orthogonal polynomials [J].
Marcellan, Francisco ;
Xu, Yuan .
EXPOSITIONES MATHEMATICAE, 2015, 33 (03) :308-352