Shadow-Consistent Semi-Supervised Learning for Prostate Ultrasound Segmentation

被引:45
作者
Xu, Xuanang [1 ]
Sanford, Thomas [2 ]
Turkbey, Baris [3 ]
Xu, Sheng [4 ]
Wood, Bradford J. [4 ]
Yan, Pingkun [1 ]
机构
[1] Rensselaer Polytech Inst, Ctr Biotechnol & Interdisciplinary Studies, Dept Biomed Engn, Troy, NY 12180 USA
[2] SUNY Upstate Med Univ, Syracuse, NY 13210 USA
[3] NCI, Mol Imaging Program, NIH, Bethesda, MD 20892 USA
[4] NIH, Ctr Intervent Oncol, Dept Radiol & Imaging Sci, Bldg 10, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Image segmentation; Ultrasonic imaging; Training; Feature extraction; Biomedical imaging; Imaging; Semisupervised learning; Prostate segmentation; semi-supervised learning; fully convolutional network; ultrasound image; shadow artifact; STATISTICAL SHAPE; ACOUSTIC SHADOW; CONFIDENCE MAPS;
D O I
10.1109/TMI.2021.3139999
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Prostate segmentation in transrectal ultrasound (TRUS) image is an essential prerequisite for many prostate-related clinical procedures, which, however, is also a long-standing problem due to the challenges caused by the low image quality and shadow artifacts. In this paper, we propose a Shadow-consistent Semi-supervised Learning (SCO-SSL) method with two novel mechanisms, namely shadow augmentation (Shadow-AUG) and shadow dropout (Shadow-DROP), to tackle this challenging problem. Specifically, Shadow-AUG enriches training samples by adding simulated shadow artifacts to the images to make the network robust to the shadow patterns. Shadow-DROP enforces the segmentation network to infer the prostate boundary using the neighboring shadow-free pixels. Extensive experiments are conducted on two large clinical datasets (a public dataset containing 1,761 TRUS volumes and an in-house dataset containing 662 TRUS volumes). In the fully-supervised setting, a vanilla U-Net equipped with our Shadow-AUG&Shadow-DROP outperforms the state-of-the-arts with statistical significance. In the semi-supervised setting, even with only 20% labeled training data, our SCO-SSL method still achieves highly competitive performance, suggesting great clinical value in relieving the labor of data annotation. Source code is released at https://github.com/DIAL-RPI/SCO-SSL.
引用
收藏
页码:1331 / 1345
页数:15
相关论文
共 54 条
[1]   Bone shadow segmentation from ultrasound data for orthopedic surgery using GAN [J].
Alsinan, Ahmed Z. ;
Patel, Vishal M. ;
Hacihaliloglu, Ilker .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (09) :1477-1485
[2]  
Basij M, 2012, IEEE SYS MAN CYBERN, P2173, DOI 10.1109/ICSMC.2012.6378062
[3]   Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images [J].
Berton, Florian ;
Cheriet, Farida ;
Miron, Marie-Claude ;
Laporte, Catherine .
COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 72 :201-211
[4]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[5]  
Chen T, 2020, PR MACH LEARN RES, V119
[6]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[7]   Retrospective comparison of measured stone size and posterior acoustic shadow width in clinical ultrasound images [J].
Dai, Jessica C. ;
Dunmire, Barbrina ;
Sternberg, Kevan M. ;
Liu, Ziyue ;
Larson, Troy ;
Thiel, Jeff ;
Chang, Helena C. ;
Harper, Jonathan D. ;
Bailey, Michael R. ;
Sorensen, Mathew D. .
WORLD JOURNAL OF UROLOGY, 2018, 36 (05) :727-732
[8]   Use of the Acoustic Shadow Width to Determine Kidney Stone Size with Ultrasound [J].
Dunmire, Barbrina ;
Harper, Jonathan D. ;
Cunitz, Bryan W. ;
Lee, Franklin C. ;
Hsi, Ryan ;
Liu, Ziyue ;
Bailey, Michael R. ;
Sorensen, Mathew D. .
JOURNAL OF UROLOGY, 2016, 195 (01) :171-176
[9]   A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images [J].
Ghose, Soumya ;
Oliver, Arnau ;
Mitra, Jhimli ;
Marti, Robert ;
Llado, Xavier ;
Freixenet, Jordi ;
Sidibe, Desire ;
Vilanova, Joan C. ;
Comet, Josep ;
Meriaudeau, Fabrice .
MEDICAL IMAGE ANALYSIS, 2013, 17 (06) :587-600
[10]  
Glorot X., 2010, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, P249, DOI DOI 10.1109/LGRS.2016.2565705