Perpendicular wavenumber dependence of the linear stability of global ion temperature gradient modes on E x B flows

被引:4
作者
Hill, P. [1 ,2 ]
Saarelma, S. [2 ]
McMillan, B. [1 ]
Peeters, A. [3 ]
Verwichte, E. [1 ]
机构
[1] Univ Warwick, Coventry CV4 7AL, W Midlands, England
[2] EURATOM CCFE Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[3] Univ Bayreuth, Bayreuth, Germany
基金
英国工程与自然科学研究理事会;
关键词
TURBULENCE SIMULATIONS; TRANSPORT; SHEAR; ROTATION; CODE;
D O I
10.1088/0741-3335/54/6/065011
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Sheared E x B flows are known to stabilize turbulence. This paper investigates how the linear stability of the ion-temperature-gradient (ITG) mode depends on k(perpendicular to) in both circular and MHD geometry. We study the effects of both rotation profiles of constant shear and of purely toroidal flow taken from experiment, using the global gyrokinetic particle-in-cell code NEMORB. We find that in order to effectively stabilize the linear mode, the fastest growing mode requires a shearing rate (gamma(E)) around 1-2 times its linear growth rate without flow (gamma(0)), while both longer and shorter wavelength modes need much larger flow shear compared with their static linear growth rates. Modes with k(theta)rho(i) < 0.2 need gamma(E) as much as 10 times their gamma(0). This variation exists in both large-aspect ratio circular cross-section and small-aspect ratio MHD geometries, with both analytic constant shear and experimental flow profiles. There is an asymmetry in the suppression with respect to the sign of gamma(E), due to competition between equilibrium profile variation and flow shear. The maximum growth rate for cases using the experimental profile in MAST equilibria occurs at shearing rates of 10% the experimental level.
引用
收藏
页数:8
相关论文
共 22 条
  • [1] INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE
    BIGLARI, H
    DIAMOND, PH
    TERRY, PW
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01): : 1 - 4
  • [2] Nonlinear low noise particle-in-cell simulations of electron temperature gradient driven turbulence
    Bottino, A.
    Peeters, A. G.
    Hatzky, R.
    Jolliet, S.
    McMillan, B. F.
    Tran, T. M.
    Villard, L.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (01)
  • [3] Global simulations of tokamak microturbulence: finite-β effects and collisions
    Bottino, A.
    Vernay, T.
    Scott, B.
    Brunner, S.
    Hatzky, R.
    Jolliet, S.
    McMillan, B. F.
    Tran, T. M.
    Villard, L.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
  • [4] Gyrokinetic simulations including the centrifugal force in a rotating tokamak plasma
    Casson, F. J.
    Peeters, A. G.
    Angioni, C.
    Camenen, Y.
    Hornsby, W. A.
    Snodin, A. P.
    Szepesi, G.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (10)
  • [5] Rotation shear and drift wave stability
    Connor, J. W.
    Martin, T. J.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (09) : 1497 - 1507
  • [6] Dickinson D, 2011, P 38 EPS C PLASM PHY, p35G
  • [7] Comparisons and physics basis of tokamak transport models and turbulence simulations
    Dimits, AM
    Bateman, G
    Beer, MA
    Cohen, BI
    Dorland, W
    Hammett, GW
    Kim, C
    Kinsey, JE
    Kotschenreuther, M
    Kritz, AH
    Lao, LL
    Mandrekas, J
    Nevins, WM
    Parker, SE
    Redd, AJ
    Shumaker, DE
    Sydora, R
    Weiland, J
    [J]. PHYSICS OF PLASMAS, 2000, 7 (03) : 969 - 983
  • [8] ANOMALOUS MOMENTUM TRANSPORT FROM DRIFT-WAVE TURBULENCE
    DOMINGUEZ, RR
    STAEBLER, GM
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (11): : 3876 - 3886
  • [9] Plasma rotation and transport in MAST spherical tokamak
    Field, A. R.
    Michael, C.
    Akers, R. J.
    Candy, J.
    Colyer, G.
    Guttenfelder, W.
    Ghim, Y. -C.
    Roach, C. M.
    Saarelma, S.
    [J]. NUCLEAR FUSION, 2011, 51 (06)
  • [10] Drift waves and transport
    Horton, W
    [J]. REVIEWS OF MODERN PHYSICS, 1999, 71 (03) : 735 - 778