Least squares Support Vector Machine regression for discriminant analysis

被引:7
|
作者
Van Gestel, T [1 ]
Suykens, JAK [1 ]
De Brabanter, J [1 ]
De Moor, B [1 ]
Vandewalle, J [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, ESAT SISTA, B-3001 Louvain, Belgium
关键词
Support Vector Machines; regression; classification; discriminant analysis; regularization;
D O I
10.1109/IJCNN.2001.938750
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support Vector Machine classifiers aim at constructing a large margin classifier in the feature space, while a nonlinear decision boundary is obtained in the input space by mapping the inputs in a nonlinear way to a possibly infinite dimensional feature space. Mercer's condition is applied to avoid an explicit expression for the nonlinear mapping and the solution follows from a finite dimensional quadratic programming problem. Recently, other classifier formulations related to a regularized form of Fisher Discriminant Analysis have been proposed in the feature space for which practical expressions are obtained in a second step by applying the Mercer condition. In this paper, we relate existing these techniques to least squares support vector machines, for which the solution follows from a linear Karush-Kuhn- Tucker system in the dual space. Based on the link with empirical linear discriminant analysis one can adjust the bias term in order to take prior information on the class distributions into account and to analyze unbalanced training sets.
引用
收藏
页码:2445 / 2450
页数:6
相关论文
共 50 条
  • [21] Aeroengine thrust estimation using least squares support vector regression machine
    Zhao, Yong-Ping
    Sun, Jian-Guo
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2009, 24 (06): : 1420 - 1425
  • [22] Least squares support vector machine classifiers
    Katholieke Universiteit Leuven, Department of Electrical Engineering, ESAT-SISTA Kardinaal, Mercierlaan 94, B-3001 Leuven , Belgium
    Neural Process Letters, 3 (293-300):
  • [23] Semisupervised Least Squares Support Vector Machine
    Adankon, Mathias M.
    Cheriet, Mohamed
    Biem, Alain
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (12): : 1858 - 1870
  • [24] Least squares support vector machine ensemble
    Sun, BY
    Huang, DS
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2013 - 2016
  • [25] Least squares support vector machine classifiers
    Suykens, JAK
    Vandewalle, J
    NEURAL PROCESSING LETTERS, 1999, 9 (03) : 293 - 300
  • [26] Least Squares Support Vector Machine Classifiers
    J.A.K. Suykens
    J. Vandewalle
    Neural Processing Letters, 1999, 9 : 293 - 300
  • [27] Dynamic least squares support vector machine
    Fan, Yugang
    Li, Ping
    Song, Zhihuan
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 4886 - +
  • [28] Interval analysis using least squares support vector fuzzy regression
    Yongqi Chen
    Qijun Chen
    Chen, Y. (chenyongqi@nbu.edu.cn), 1600, South China University of Technology (10): : 458 - 464
  • [29] Interval analysis using least squares support vector fuzzy regression
    Yongqi CHEN
    Qijun CHEN
    Journal of Control Theory and Applications, 2012, 10 (04) : 458 - 464
  • [30] Performance analysis of least squares support vector regression filtering system
    Deng Xiao-Ying
    Yang Ding-Hui
    Liu Tao
    Li Yue
    Yang Bao-Jun
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2010, 53 (08): : 2004 - 2011