Conductive bacterial cellulose-polyaniline blends: Influence of the matrix and synthesis conditions

被引:52
作者
Alonso, Emanuel [1 ]
Faria, Marisa [1 ]
Mohammadkazemi, Faranak [2 ]
Resnik, Matic [3 ]
Ferreira, Artur [4 ]
Cordeiro, Nereida [1 ]
机构
[1] Univ Madeira, Fac Sci & Engn, P-9000390 Funchal, Portugal
[2] Shadid Beheshti Univ, Fac New Technol Engn, Dept Biosyst, Sci & Res Campus, Savadkooh, Mazandaram, Iran
[3] Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia
[4] Univ Aveiro, CICECO Aveiro Inst Mat, Agueda Sch Technol & Management, P-3810193 Aveiro, Portugal
关键词
Bacterial cellulose; Polyaniline; Blend membrane; Inverse gas chromatography; IN-SITU; BIOSYNTHESIS;
D O I
10.1016/j.carbpol.2017.12.025
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Bacterial cellulose/polyaniline (BC/PANi) blends present a great potential for several applications. The current study evaluates the impact of using different BC matrixes (drained, freeze-dried and regenerated) and different synthesis conditions (in situ and ex situ) to improve the inherent properties of BC, which were monitored through FTIR-ATR, EDX, XRD, SEM, AFM, swelling, contact angle measurement and IGC. The employment of in situ polymerization onto drained BC presented the most conductive membrane (1.4 x 10(-1) S/cm). The crystallinity, swelling capacity, surface energy and acid/base behavior of the BC membranes is substantially modified upon PANi incorporation, being dependent on the BC matrix used, being the freeze-dried BC blends the ones with highest crystallinity (up to 54%), swelling capacity (up to 414%) and surface energy (up to 75.0 mJ/m(2)). Hence, this work evidenced that the final properties of the BC/PANi blends are greatly influenced by both the BC matrixes and synthesis methods employed.
引用
收藏
页码:254 / 262
页数:9
相关论文
共 33 条
[1]  
[Anonymous], 2013, CELLULOSE FUNDAMENTA
[2]  
[Anonymous], 2012, NEW POLYM SPECIAL AP
[3]   In-situ glyoxalization during biosynthesis of bacterial cellulose [J].
Castro, Cristina ;
Cordeiro, Nereida ;
Faria, Marisa ;
Zuluaga, Robin ;
Putaux, Jean-Luc ;
Filpponen, Ilari ;
Velez, Lina ;
Rojas, Orlando J. ;
Ganan, Piedad .
CARBOHYDRATE POLYMERS, 2015, 126 :32-39
[4]  
Catedral M., 2004, Science Diliman, V16, P41, DOI DOI 10.4197/SCI.16-1.5
[5]  
Chawla PR, 2009, FOOD TECHNOL BIOTECH, V47, P107
[6]   Natural fibers characterization by inverse gas chromatography [J].
Cordeiro, N. ;
Gouveia, C. ;
Moraes, A. G. O. ;
Amico, S. C. .
CARBOHYDRATE POLYMERS, 2011, 84 (01) :110-117
[7]  
Creely JJ., 1959, Text Res J, V29, P786, DOI DOI 10.1177/004051755902901003
[8]  
Fan M, 2012, FOURIER TRANSFORM - MATERIALS ANALYSIS, P45
[9]   Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents [J].
Ferguson, Auren ;
Khan, Umar ;
Walsh, Melissa ;
Lee, Koon-Yang ;
Bismarck, Alexander ;
Shaffer, Milo S. P. ;
Coleman, Jonathan N. ;
Bergin, Shane D. .
BIOMACROMOLECULES, 2016, 17 (05) :1845-1853
[10]   Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films [J].
Figueiredo, Andrea G. P. R. ;
Figueiredo, Ana R. P. ;
Alonso-Varona, Ana ;
Fernandes, Susana C. M. ;
Palomares, Teodoro ;
Rubio-Azpeitia, Eva ;
Barros-Timmons, Ana ;
Silvestre, Armando J. D. ;
Neto, Carlos Pascoal ;
Freire, Carmen S. R. .
BIOMED RESEARCH INTERNATIONAL, 2013, 2013