Dynamic Properties of the Predator-Prey Discontinuous Dynamical System

被引:1
作者
El-Sayed, Ahmed M. A. [2 ]
Nasr, Mohamed E. [1 ]
机构
[1] Benha Univ, Fac Sci, Banha 13518, Egypt
[2] Univ Alexandria, Fac Sci, Alexandria, Egypt
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2012年 / 67卷 / 1-2期
关键词
Discontinuous Dynamical Systems; Predator-Prey Discontinuous Dynamical System; Existence and Uniqueness; Uniform and Local Stability; Equilibrium Points; Chaos and Bifurcations; BIFURCATION; STABILITY; MODEL;
D O I
10.5560/ZNA.2011-0051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we study the dynamic properties (equilibrium points, local and global stability, chaos and bifurcation) of the predator-prey discontinuous dynamical system. The existence and uniqueness of uniformly Lyapunov stable solution will be proved.
引用
收藏
页码:57 / 60
页数:4
相关论文
共 10 条
[1]   Chaotic dynamics of a discrete prey-predator model with Holling type II [J].
Agiza, H. N. ;
ELabbasy, E. M. ;
EL-Metwally, H. ;
Elsadany, A. A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :116-129
[2]  
Curtain R., 1977, FUNCTIONAL ANAL MODE
[3]   Detailed analysis of a nonlinear prey-predator model [J].
Danca, M ;
Codreanu, S ;
Bako, B .
JOURNAL OF BIOLOGICAL PHYSICS, 1997, 23 (01) :11-20
[4]  
El-Sayed A. M. A., 2011, J EGYPT MATH SOC, V19, P1
[5]  
Elaydi S., 2005, Undergraduate Texts in Mathematics, V3rd
[6]  
Galor Oded, 2007, Discrete Dynamical Systems
[8]   GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS [J].
HSU, SB ;
HUANG, TW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :763-783
[9]   Bifurcation and chaos in discrete-time predator-prey system [J].
Jing, ZJ ;
Yang, JP .
CHAOS SOLITONS & FRACTALS, 2006, 27 (01) :259-277
[10]   Complex dynamic behaviors of a discrete-time predator-prey system [J].
Liu, Xiaoli ;
Xiao, Dongmei .
CHAOS SOLITONS & FRACTALS, 2007, 32 (01) :80-94