Application of Hertzian theory to torus on plane contacts

被引:4
作者
Kelley, Josephine [1 ]
Babaalihaghighi, Kambiz [1 ]
Bader, Norbert [1 ]
Wege, Christian [2 ]
Pape, Florian [1 ]
Poll, Gerhard [1 ]
机构
[1] Leibniz Univ Hannover, Inst Machine Design & Tribol, Hannover, Germany
[2] Leibniz Univ Hannover, Inst Fertigungstech & Werkzeugmaschinen, Hannover, Germany
关键词
Contact mechanics; Hertzian theory; general shape contacts; torus on plane contacts; ROLLER END CONTACT; ELASTOHYDRODYNAMIC ANALYSIS;
D O I
10.1177/13506501221074805
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Hertzian theory includes a well-known analytical solution for the calculation of the contact area and pressure between two bodies. Hertzian theory is not unconditionally applicable, in particular with regards to the shape of the contacting solids. When geometric assumptions are invalid, the finite element method is generally used, but is more computationally intensive. We propose and analyze a generalization to the geometric assumptions of Hertzian theory and apply it to torus on plane contacts. In order to evaluate the accuracy of the calculation, a finite element model is used as a basis for comparison.
引用
收藏
页码:2189 / 2208
页数:20
相关论文
共 27 条
[1]  
Aschenbrenner A., 2019, KONSTRUKTION, V71, P52
[2]   SIMPLIFIED SOLUTION FOR ELLIPTICAL-CONTACT DEFORMATION BETWEEN 2 ELASTIC SOLIDS [J].
BREWE, DE ;
HAMROCK, BJ .
JOURNAL OF LUBRICATION TECHNOLOGY-TRANSACTIONS OF THE ASME, 1977, 99 (04) :485-487
[3]  
Daimler AG, 2013, GESCHFTSBERICHT DAIM, P148
[4]   HYDRODYNAMIC LUBRICATION OF THE RIB-ROLLER END CONTACT OF A TAPERED ROLLER BEARING [J].
GADALLAH, N ;
DALMAZ, G .
JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 1984, 106 (02) :265-274
[5]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[6]  
Hertz H., 1882, J REINE ANGEW MATH, P156, DOI [10.1515/crll.1882.92.156, DOI 10.1515/9783112342404-004]
[7]  
Kiekbusch T., 2016, Ph.D. thesis
[8]  
Lubrecht A, 1987, The numerical solution of the elastohydrodynamically lubricated lineand point contact problem
[9]  
Moes H.:., 2000, Lubrication and Beyond
[10]  
Monera MG., 2012, TAYLOR EXPANSION EXP