A unifying model for mTORC1-mediated regulation of mRNA translation

被引:1081
作者
Thoreen, Carson C. [1 ,2 ,3 ]
Chantranupong, Lynne [3 ,4 ,5 ,6 ]
Keys, Heather R. [3 ,4 ,5 ,6 ]
Wang, Tim [3 ,4 ,5 ]
Gray, Nathanael S. [1 ,2 ]
Sabatini, David M. [3 ,4 ,5 ,6 ]
机构
[1] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[3] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[4] MIT, Howard Hughes Med Inst, Cambridge, MA 02139 USA
[5] MIT, Dept Biol, Cambridge, MA 02139 USA
[6] Broad Inst Harvard & MIT, Cambridge, MA 02142 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
RIBOSOME ENTRY SITES; LARGE GENE LISTS; CELL-PROLIFERATION; INDEPENDENT MANNER; MAMMALIAN TARGET; MTOR PATHWAY; AKT ACTIVITY; CYCLIN D1; RAPAMYCIN; INHIBITION;
D O I
10.1038/nature11083
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mTOR complex 1 (mTORC1) kinase nucleates a pathway that promotes cell growth and proliferation and is the target of rapamycin, a drug with many clinical uses(1). mTORC1 regulates messenger RNA translation, but the overall translational program is poorly defined and no unifying model exists to explain how mTORC1 differentially controls the translation of specific mRNAs. Here we use high-resolution transcriptome-scale ribosome profiling to monitor translation in mouse cells acutely treated with the mTOR inhibitor Torin 1, which, unlike rapamycin, fully inhibits mTORC1 (ref. 2). Our data reveal a surprisingly simple model of the mRNA features and mechanisms that confer mTORC1-dependent translation control. The subset of mRNAs that are specifically regulated by mTORC1 consists almost entirely of transcripts with established 5' terminal oligopyrimidine (TOP) motifs, or, like Hsp90ab1 and Ybx1, with previously unrecognized TOP or related TOP-like motifs that we identified. We find no evidence to support proposals that mTORC1 preferentially regulates mRNAs with increased 5' untranslated region length or complexity(3). mTORC1 phosphorylates a myriad of translational regulators, but how it controls TOP mRNA translation is unknown(4). Remarkably, loss of just the 4E-BP family of translational repressors, arguably the best characterized mTORC1 substrates, is sufficient to render TOP and TOP-like mRNA translation resistant to Torin 1. The 4E-BPs inhibit translation initiation by interfering with the interaction between the cap-binding protein eIF4E and eIF4G1. Loss of this interaction diminishes the capacity of eIF4E to bind TOP and TOP-like mRNAs much more than other mRNAs, explaining why mTOR inhibition selectively suppresses their translation. Our results clarify the translational program controlled by mTORC1 and identify 4E-BPs and eIF4G1 as its master effectors.
引用
收藏
页码:109 / U142
页数:8
相关论文
共 39 条
  • [1] Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site
    Ali, SM
    Sabatini, DM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (20) : 19445 - 19448
  • [2] Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner
    Bilanges, Benoit
    Argonza-Barrett, Rhoda
    Kolesnichenko, Marina
    Skinner, Christina
    Nair, Manoj
    Chen, Michelle
    Stokoe, David
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2007, 27 (16) : 5746 - 5764
  • [3] Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
    Choo, Andrew Y.
    Yoon, Sang-Oh
    Kim, Sang Gyun
    Roux, Philippe P.
    Blenis, John
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (45) : 17414 - 17419
  • [4] eIF-4E expression and its role in malignancies and metastases
    De Benedetti, A
    Graff, JR
    [J]. ONCOGENE, 2004, 23 (18) : 3189 - 3199
  • [5] mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs
    Dowling, Ryan J. O.
    Topisirovic, Ivan
    Alain, Tommy
    Bidinosti, Michael
    Fonseca, Bruno D.
    Petroulakis, Emmanuel
    Wang, Xiaoshan
    Larsson, Ola
    Selvaraj, Anand
    Liu, Yi
    Kozma, Sara C.
    Thomas, George
    Sonenberg, Nahum
    [J]. SCIENCE, 2010, 328 (5982) : 1172 - 1176
  • [6] Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2
    Feldman, Morris E.
    Apsel, Beth
    Uotila, Aino
    Loewith, Robbie
    Knight, Zachary A.
    Ruggero, Davide
    Shokat, Kevan M.
    [J]. PLOS BIOLOGY, 2009, 7 (02) : 371 - 383
  • [7] AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression
    Gera, JF
    Mellinghoff, IK
    Shi, YJ
    Rettig, MB
    Tran, C
    Hsu, JH
    Sawyers, CL
    Lichtenstein, AK
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (04) : 2737 - 2746
  • [8] Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics
    Grolleau, A
    Bowman, J
    Pradet-Balade, B
    Puravs, E
    Hanash, S
    Garcia-Sanz, JA
    Beretta, L
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (25) : 22175 - 22184
  • [9] Mammalian microRNAs predominantly act to decrease target mRNA levels
    Guo, Huili
    Ingolia, Nicholas T.
    Weissman, Jonathan S.
    Bartel, David P.
    [J]. NATURE, 2010, 466 (7308) : 835 - U66
  • [10] mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin
    Harris, Thurl E.
    Chi, An
    Shabanowitz, Jeffrey
    Hunt, Donald F.
    Rhoads, Robert E.
    Lawrence, John C., Jr.
    [J]. EMBO JOURNAL, 2006, 25 (08) : 1659 - 1668