An inverse transmission scattering problem for periodic media

被引:10
|
作者
Yang, Jiaqing [1 ]
Zhang, Bo
机构
[1] Chinese Acad Sci, LSEC, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
ELECTROMAGNETIC SCATTERING; UNIQUENESS THEOREMS;
D O I
10.1088/0266-5611/27/12/125010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the problem of scattering of time-harmonic waves by a penetrable periodic structure. The structure separates the whole space into three regions: the medium above and below the structure is assumed to be homogeneous, and the medium inside the structure is assumed to be inhomogeneous with the refractive index q(x). Having established the well posedness of the scattering problem, we show that the scattered field measured only above the structure, corresponding to a countably infinite number of quasi-periodic waves, uniquely determine the two grating profiles. Furthermore, we prove that the refractive index q(x) can be uniquely determined from the scattered field measured above and below the structure, corresponding to a countably infinite number of quasi-periodic waves, if q depends only on one direction and if the two grating profiles are known constants. The proofs are based on a priori estimates of the solutions of the direct problem and new mixed reciprocity relations.
引用
收藏
页数:22
相关论文
共 50 条