Scalable Convolutional Neural Network for Image Compressed Sensing

被引:115
作者
Shi, Wuzhen [1 ]
Jiang, Feng [1 ,2 ]
Liu, Shaohui [1 ,2 ]
Zhao, Debin [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
中国国家自然科学基金;
关键词
SIGNAL RECOVERY; RECONSTRUCTION; BINARY;
D O I
10.1109/CVPR.2019.01257
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep learning based image Compressed Sensing (CS) methods have been proposed and demonstrated superior reconstruction quality with low computational complexity. However, the existing deep learning based image CS methods need to train different models for different sampling ratios, which increases the complexity of the encoder and decoder. In this paper, we propose a scalable convolutional neural network (dubbed SCSNet) to achieve scalable sampling and scalable reconstruction with only one model. Specifically, SCSNet provides both coarse and fine granular scalability. For coarse granular scalability, SCSNet is designed as a single sampling matrix plus a hierarchical reconstruction network that contains a base layer plus multiple enhancement layers. The base layer provides the basic reconstruction quality, while the enhancement layers reference the lower reconstruction layers and gradually improve the reconstruction quality. For fine granular scalability, SCSNet achieves sampling and reconstruction at any sampling ratio by using a greedy method to select the measurement bases. Compared with the existing deep learning based image CS methods, SCSNet achieves scalable sampling and quality scalable reconstruction at any sampling ratio with only one model. Experimental results demonstrate that SCSNet has the state-of-the-art performance while maintaining a comparable running speed with the existing deep learning based image CS methods.
引用
收藏
页码:12282 / 12291
页数:10
相关论文
共 40 条
  • [1] Deterministic Construction of Binary, Bipolar, and Ternary Compressed Sensing Matrices
    Amini, Arash
    Marvasti, Farokh
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) : 2360 - 2370
  • [2] Contour Detection and Hierarchical Image Segmentation
    Arbelaez, Pablo
    Maire, Michael
    Fowlkes, Charless
    Malik, Jitendra
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) : 898 - 916
  • [3] Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding
    Bevilacqua, Marco
    Roumy, Aline
    Guillemot, Christine
    Morel, Marie-Line Alberi
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [4] Bo L, 2017, INT CONF WIRE COMMUN
  • [5] Overview of SHVC: Scalable Extensions of the High Efficiency Video Coding Standard
    Boyce, Jill M.
    Ye, Yan
    Chen, Jianle
    Ramasubramonian, Adarsh K.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (01) : 20 - 34
  • [6] Chen C, 2011, CONF REC ASILOMAR C, P1193, DOI 10.1109/ACSSC.2011.6190204
  • [7] Atomic decomposition by basis pursuit
    Chen, SSB
    Donoho, DL
    Saunders, MA
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) : 33 - 61
  • [8] An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    Daubechies, I
    Defrise, M
    De Mol, C
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) : 1413 - 1457
  • [9] Accelerating the Super-Resolution Convolutional Neural Network
    Dong, Chao
    Loy, Chen Change
    Tang, Xiaoou
    [J]. COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 391 - 407
  • [10] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306