Properties of sintered Mg alloys for biomedical applications

被引:4
作者
Wolff, Martin [1 ]
Blawert, Carsten [1 ]
Dahms, Michael [2 ]
Ebel, Thomas [1 ]
机构
[1] Helmholtz Zentrum Geesthacht, Inst Mat Res, Max Planck Str 1, D-21502 Geesthacht, Germany
[2] FH Flensburg, Univ Appl Sci, D-24943 Flensburg, Germany
来源
LIGHT METALS TECHNOLOGY V | 2011年 / 690卷
关键词
sintering; magnesium; MgCa; biodegradable; cytocompatibility; BIODEGRADABLE MAGNESIUM SCAFFOLDS; BONE;
D O I
10.4028/www.scientific.net/MSF.690.491
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In addition to the use as light weight construction material, magnesium alloys are also very suitable for future orthopaedic and traumatology applications. Common permanent implant materials such as titanium or stainless steel still suffer from stress shielding problems, causing bone resorption and implant loosening. In contrast, magnesium alloys provide elastic moduli and strengths matching those of cortical bone. In order to support osseointegration and vascularisation, an open porous surface structure of an Mg-implant is advantageous. The powder metallurgical processing route of Mg-alloys enables the generation of such parts. Powder blends with different sintering behaviour were produced via mixing pure Mg-powder with different Ca containing master alloy powders (MAP). As a result, sintering of these Mg alloy powders and blends became feasible. Sintered parts were investigated in view of shrinkage, porosity, grain size using SEM, EDX and XRD. In addition, compression tests were performed revealing ultimate compression strength up to 328 MPa, plastic compressibility of 22 % and compressive yield strength up to 90 MPa. Hence, the PM-route enables the production of parts with mechanical properties matching those of cortical bone.
引用
收藏
页码:491 / +
页数:2
相关论文
共 10 条
  • [1] Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling
    Janning, C.
    Willbold, E.
    Vogt, C.
    Nellesen, J.
    Meyer-Lindenberg, A.
    Windhagen, H.
    Thorey, F.
    Witte, F.
    [J]. ACTA BIOMATERIALIA, 2010, 6 (05) : 1861 - 1868
  • [2] Massalski T.B., 1996, Binary Alloy Phase Diagrams, V2nd
  • [3] COMPARISON OF MECHANICAL-PROPERTIES OF HUMAN, BOVINE BONE AND A NEW PROCESSED BONE XENOGRAFT
    POUMARAT, G
    SQUIRE, P
    [J]. BIOMATERIALS, 1993, 14 (05) : 337 - 340
  • [4] Magnesium and its alloys as orthopedic biomaterials: A review
    Staiger, MP
    Pietak, AM
    Huadmai, J
    Dias, G
    [J]. BIOMATERIALS, 2006, 27 (09) : 1728 - 1734
  • [5] Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling
    Witte, F.
    Ulrich, H.
    Palm, C.
    Willbold, E.
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 81A (03) : 757 - 765
  • [6] Biodegradable magnesium scaffolds: Part I: Appropriate inflammatory response
    Witte, F.
    Ulrich, H.
    Rudert, M.
    Willbold, E.
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 81A (03) : 748 - 756
  • [7] In vitro and in vivo corrosion measurements of magnesium alloys
    Witte, F
    Fischer, J
    Nellesen, J
    Crostack, HA
    Kaese, V
    Pisch, A
    Beckmann, F
    Windhagen, H
    [J]. BIOMATERIALS, 2006, 27 (07) : 1013 - 1018
  • [8] Wolff M., EURO PM2009 P, V2, P417
  • [9] Sintering of Magnesium
    Wolff, Martin
    Ebel, Thomas
    Dahms, Michael
    [J]. ADVANCED ENGINEERING MATERIALS, 2010, 12 (09) : 829 - 836
  • [10] [No title captured]