Ultrafast photonic systems for FBG sensing in detonation and shock wave experiments

被引:2
作者
Rodriguez, George [1 ]
机构
[1] Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA CINT MS K771, Los Alamos, NM 87545 USA
来源
FIBER OPTIC SENSORS AND APPLICATIONS XIV | 2017年 / 10208卷
关键词
fiber Bragg grating; fiber sensing; shock waves; detonation; high-speed interrogation; BRAGG; PRESSURE; STRAIN;
D O I
10.1117/12.2257686
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ultrafast high speed photonics are shown to provide the necessary temporal and spectral information required for understanding FBG response under impulsive loading from either high explosive detonation or an inert shock wave interaction. Demonstration of both, chirped and uniform, silica based FBGs are presented for sensing under harsh conditions that vary from thermal ignition in high explosives to inert tracking of high pressure shock waves. Ultrafast laser based chirped pulse methods are used to time-stretch and streak the spectral response of the FBG sensor to provide information about material response under loading. Coherent broadband pulses from a femtosecond modelocked fiber laser at 1560 nm are used to illuminate and interrogate the FBG at a repetition rate of 100 MHz. After reflecting off the FBG, chromatic dispersion is applied to time stretch the pulse and separate spectral channels for detection with a 35 GHz photoreceiver and recording with a 25 GHz digitizing oscilloscope. Results include pressure wave tracking in weak inert shocks and pressure measurements in thermal ignition of high explosives detonation. The focus of the presentation is present the method and tools used for this approach to high speed FBG sensing.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Investigation on the dynamics of shock wave generated by detonation reflection [J].
Yang, Zezhong ;
Zhang, Bo .
COMBUSTION AND FLAME, 2024, 270
[22]   Head-on Collision of a Detonation with a Planar Shock Wave [J].
H. D. Ng ;
B. B. Botros ;
J. Chao ;
J. M. Yang ;
N. Nikiforakis ;
J. H. S. Lee .
Shock Waves, 2006, 15 :341-352
[23]   Microwave diagnostics of shock-wave and detonation processes [J].
Bel'skii, V. M. ;
Mikhailov, A. L. ;
Rodionov, A. V. ;
Sedov, A. A. .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2011, 47 (06) :639-650
[24]   Head-on collision of a detonation with a planar shock wave [J].
Ng, H. D. ;
Botros, B. B. ;
Chao, J. ;
Yang, J. M. ;
Nikiforakis, N. ;
Lee, J. H. S. .
SHOCK WAVES, 2006, 15 (05) :341-352
[25]   Shock and detonation wave diffraction at a sudden expansion in gas-particle mixtures [J].
Fedorov, A. V. ;
Khmel, T. A. ;
Kratova, Yu. V. .
SHOCK WAVES, 2008, 18 (04) :281-290
[26]   Retonation wave upon shock-wave initiation of detonation of solid explosives [J].
Afanasenkov, AN .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2002, 38 (04) :470-472
[27]   Numerical and experimental analysis of detonation induced by shock wave focusing [J].
Yang, Zezhong ;
Zhang, Bo .
COMBUSTION AND FLAME, 2023, 251
[28]   Specific Features of Shock Wave Initiation of Detonation in Liquid Explosives [J].
D. Yu. Rapota ;
A. V. Utkin ;
V. M. Mochalova ;
S. I. Torunov ;
V. A. Sosikov .
Combustion, Explosion, and Shock Waves, 2023, 59 :497-507
[29]   Specific Features of Shock Wave Initiation of Detonation in Liquid Explosives [J].
Rapota, D. Yu. ;
Utkin, A. V. ;
Mochalova, V. M. ;
Torunov, S. I. ;
Sosikov, V. A. .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2023, 59 (04) :497-507
[30]   Detonation-driven-shock wave interactions with perforated plates [J].
Zare-Behtash, H. ;
Gongora-Orozco, N. ;
Kontis, K. ;
Jagadeesh, G. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2014, 228 (05) :671-678