Semi-exact Solutions of Konwent Potential

被引:16
作者
Dong, Qian [1 ]
Dong, Shi-Shan [2 ]
Hernandez-Marquez, Eduardo [3 ]
Silva-Ortigoza, Ramon [3 ]
Sun, Guo-Hua [4 ]
Dong, Shi-Hai [1 ]
机构
[1] Inst Politecn Nacl, Lab Informac Cuant, UPALM, CIDETEC, Cdmx 07700, Mexico
[2] Dalian Univ, Informat & Engn Coll, Dalian 116622, Peoples R China
[3] Inst Politecn Nacl, UPALM, CIDETEC, Area Mecatron, Cdmx 07700, Mexico
[4] Inst Politecn Nacl, CIC, Catedrat CONACYT, Cdmx 07738, DF, Mexico
关键词
exact solution; Konwent potential; confluent Heun function; double well potential; SCHRODINGER-EQUATION; ENERGY;
D O I
10.1088/0253-6102/71/2/231
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we study the quantum system with the symmetric Konwent potential and show how to find its exact solutions. We find that the solutions are given by the confluent Heun function. The eigenvalues have to be calculated numerically because series expansion method does not work due to the variable z >= 1. The properties of the wave functions depending on the potential parameter A are illustrated for given potential parameters V-0 and a. The wave functions are shrunk towards the origin with the increasing vertical bar A vertical bar. In particular, the amplitude of wave function of the second excited state moves towards the origin when the positive parameter A decreases. We notice that the energy levels increase with the increasing potential parameter vertical bar A vertical bar >= 1, but the variation of the energy levels becomes complicated for vertical bar A vertical bar is an element of (0, 1), which possesses a double well. It is seen that the energy levels e increase with vertical bar A vertical bar for the parameter interval vertical bar A vertical bar is an element of (-1,0), while they decrease with vertical bar A vertical bar for the parameter interval A is an element of (0,1).
引用
收藏
页码:231 / 236
页数:6
相关论文
共 34 条
[1]   On the solvability of the generalized hyperbolic double-well models [J].
Agboola, Davids .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (05)
[2]  
[Anonymous], 1981, QUANTUM MECH
[3]  
Baradaran M., 2017, ADV HIGH ENERGY PHYS, V2017
[4]   Heun functions and quasi-exactly solvable double-well potentials [J].
Chen, Bei-Hua ;
Wu, Yan ;
Xie, Qiong-Tao .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (03)
[5]  
Chen WL, 2016, COMMUN THEOR PHYS, V66, P196, DOI 10.1088/0253-6102/66/2/196
[6]  
COOPER F, 1995, PHYS REP, V251, P268
[7]   Exact analytical solutions of the Schrodinger equation for a two dimensional purely sextic double-well potential [J].
Dai-Nam Le ;
Hoang, Ngoc-Tram D. ;
Van-Hoang Le .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (03)
[8]  
Dong S. - H., 2007, FACTORIZATION METHOD, DOI DOI 10.1007/978-1-4020-5796-0
[9]   Exact solutions and ladder operators for a new anharmonic oscillator [J].
Dong, SH ;
Sun, GH ;
Lozada-Cassou, M .
PHYSICS LETTERS A, 2005, 340 (1-4) :94-103
[10]  
Dong SH, 2011, WAVE EQUATIONS IN HIGHER DIMENSIONS, P3, DOI 10.1007/978-94-007-1917-0