Stochastic generalized Burgers equations driven by fractional noises

被引:44
作者
Jiang, Yiming [1 ,2 ]
Wei, Tingting [1 ,2 ]
Zhou, Xiaowen [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Stochastic generalized Burgers equation; Fractional noise; Density of the law; Malliavin calculus; HEAT-EQUATIONS; EXISTENCE; SPDES;
D O I
10.1016/j.jde.2011.07.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence and uniqueness are proved for the solutions to a class of stochastic generalized Burgers equations driven by multi-parameter fractional noises. In addition, the existence and moment estimate are also obtained for the density of such a solution. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1934 / 1961
页数:28
相关论文
共 30 条
[1]  
Alos E., 2003, Stoch. Stoch. Reports, V75, P129
[2]   WHITE-NOISE DRIVEN PARABOLIC SPDES WITH MEASURABLE DRIFT [J].
BALLY, V ;
GYONGY, I ;
PARDOUX, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 120 (02) :484-510
[3]   THE STOCHASTIC BURGERS-EQUATION [J].
BERTINI, L ;
CANCRINI, N ;
JONALASINIO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :211-232
[4]   STOCHASTIC CAHN-HILLIARD EQUATION WITH FRACTIONAL NOISE [J].
Bo, Lijun ;
Jiang, Yiming ;
Wang, Yongjin .
STOCHASTICS AND DYNAMICS, 2008, 8 (04) :643-665
[5]   On a class of stochastic Anderson models with fractional noises [J].
Bo, Lijun ;
Jiang, Yiming ;
Wang, Yongjin .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (02) :256-273
[6]   Stochastic Cahn-Hilliard partial differential equations with Levy spacetime white noises [J].
Bo, Lijun ;
Wang, Yongjin .
STOCHASTICS AND DYNAMICS, 2006, 6 (02) :229-244
[7]  
Burgers J.M., 1948, ADV APPL MECH, V1, P171
[8]  
Burgers J.M., 1974, The Nonlinear Diffusion Equation, DOI [10.1007/978-94-010-1745-9, DOI 10.1007/978-94-010-1745-9]
[9]   Large deviations for a Burgers'-type SPDE [J].
Cardon-Weber, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (01) :53-70
[10]   Cahn-Hilliard stochastic equation: existence of the solution and of its density [J].
Cardon-Weber, C .
BERNOULLI, 2001, 7 (05) :777-816