Stability Analysis and Bifurcation Control of a Delayed Incommensurate Fractional-Order Gene Regulatory Network

被引:18
作者
Liu, Feng [1 ,2 ]
Dong, Ting [1 ,2 ]
Guan, Zhi-Hong [3 ]
Wang, Hua O. [4 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Coll Automat, Wuhan 430074, Peoples R China
[4] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2020年 / 30卷 / 06期
关键词
Bifurcation control; incommensurate fractional-order system; gene regulatory network; time delay; Hopf bifurcation; WIRELESS SENSOR NETWORKS; HOPF-BIFURCATION; PERIODIC-SOLUTIONS; NEURAL-NETWORK; CLUSTER SYNCHRONIZATION; HYBRID CONTROL; DISCRETE; SYSTEMS; MODEL; FEEDBACK;
D O I
10.1142/S0218127420500893
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, stability analysis and bifurcation control for a novel incommensurate fractional-order delayed gene regulatory network are investigated. Firstly, the associated characteristic equation is analyzed by taking time delay as a bifurcation parameter, and the conditions of creation for Hopf bifurcation are established. It is demonstrated that the time delay can profoundly affect the dynamics of the proposed system and each order has a significant influence on the creation of bifurcation simultaneously. Then we study the stability and bifurcation behavior of the fractional-order networks by adding a nonlinear feedback controller. Finally, numerical simulations of two examples validate the obtained results.
引用
收藏
页数:24
相关论文
共 69 条
[1]   Hopf bifurcation and chaos in fractional-order modified hybrid optical system [J].
Abdelouahab, Mohammed-Salah ;
Hamri, Nasr-Eddine ;
Wang, Junwei .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :275-284
[2]   LOCAL FEEDBACK STABILIZATION AND BIFURCATION CONTROL .1. HOPF-BIFURCATION [J].
ABED, EH ;
FU, JH .
SYSTEMS & CONTROL LETTERS, 1986, 7 (01) :11-17
[3]  
[Anonymous], 2017, INT J BIFURCATION CH
[4]  
[Anonymous], NONLIN DYN
[5]   SYSTEMS BIOLOGY Attractors and Democratic Dynamics [J].
Bar-Yam, Yaneer ;
Harmon, Dion ;
de Bivort, Benjamin .
SCIENCE, 2009, 323 (5917) :1016-1017
[6]  
Bhalekar S., 2011, J. Fract. Calc. Appl., V1, P1
[7]   Stability of delay induced oscillations in gene expression of Hes1 protein model [J].
Bodnar, Marek ;
Bartlomiejczyk, Agnieszka .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) :2227-2239
[8]  
Caponetto R., 2010, Modeling and control applications
[9]   Memory effect in a self-sustained birhythmic biological system [J].
Chamgoue, A. Cheage ;
Ngueuteu, G. S. M. ;
Yamapi, R. ;
Woafo, R. .
CHAOS SOLITONS & FRACTALS, 2018, 109 :160-169
[10]   Bifurcation control: Theories, methods, and applications [J].
Chen, GR ;
Moiola, JL ;
Wang, HO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (03) :511-548