GROUP ALGEBRAS WITH ENGEL UNIT GROUPS

被引:7
作者
Ramezan-Nassab, M. [1 ,2 ]
机构
[1] Kharazmi Univ, Dept Math, 50 Taleghani St, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
group algebra; Engel group; Lie Engel ring; GROUP IDENTITY;
D O I
10.1017/S1446788716000094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be afield of characteristic p >= 0 and G any group. In this article, the Engel property of the group of units of the group algebra FG is investigated. We show that if G is locally finite, then u(FG) is an Engel group if and only if G is locally nilpotent and G' is a p-group. Suppose that the set of nilpotent elements of FG is finite, It is also shown that if G is torsion, then u(FG) is an Engel group if and only if G' is a finite p-group and FG is Lie Engel, if and only if (FG) is locally nilpotent. If G is nontorsion but FG is semiprime, we show that the Engel property of it u(FG) implies that the set of torsion elements of G forms an abelian normal subgroup of G.
引用
收藏
页码:244 / 252
页数:9
相关论文
共 16 条
[1]   Group algebras with an Engel group of units [J].
Bovdi, A. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 80 :173-178
[2]  
BOVDI AA, 1992, MATH USSR SB+, V72, P121, DOI 10.1070/SM1992v072n01ABEH001265
[3]   GROUP IDENTITIES ON UNITS OF RINGS [J].
GIAMBRUNO, A ;
JESPERS, E ;
VALENTI, A .
ARCHIV DER MATHEMATIK, 1994, 63 (04) :291-296
[4]   Group algebras whose units satisfy a group identity [J].
Giambruno, A ;
Sehgal, S ;
Valenti, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (03) :629-634
[5]   Group identities on units of group algebras [J].
Giambruno, A ;
Sehgal, SK ;
Valenti, A .
JOURNAL OF ALGEBRA, 2000, 226 (01) :488-504
[6]  
Lee GT, 2010, ALGEBRA APPL, V12, P1, DOI 10.1007/978-1-84996-504-0
[7]  
Liu CH, 1999, P AM MATH SOC, V127, P337, DOI 10.1090/S0002-9939-99-04684-5
[8]   Group algebras with units satisfying a group identity [J].
Liu, CH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) :327-336
[9]  
Passman D. S., 1977, Pure and Applied Mathe- matics
[10]   GROUP ALGEBRAS WITH LOCALLY NILPOTENT UNIT GROUPS [J].
Ramezan-Nassab, M. .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) :604-612