Strengthening of Stable Cr-Ni Austenitic Stainless Steel under Thermomechanical Treatments

被引:0
|
作者
Akkuzin, S. A. [1 ]
Litovchenko, I. Yu. [1 ,2 ]
Tyumentsev, A. N. [1 ,2 ]
机构
[1] Natl Res Tomsk State Univ, Tomsk 634050, Russia
[2] RAS, Inst Strength Phys & Mat Sci SB, Tomsk 634055, Russia
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2017 (AMHS'17) | 2017年 / 1909卷
关键词
MICROSTRUCTURE; EVOLUTION;
D O I
10.1063/1.5013682
中图分类号
O59 [应用物理学];
学科分类号
摘要
The features of microstructure and mechanical properties of stable austenitic steel after thermomechanical treatment consisted of low-temperature deformation, deformation in the temperature range T = 273-873 K, and subsequent annealing were investigated. It is shown that under such treatment direct (gamma -> alpha')- and reverse (alpha'->gamma)-martensitic transformations occur in the steel. As a result of the thermomechanical treatment submicrocrystalline structural states with high density of micro- and nanotwins and localized deformation bands are formed. The strength of the steel in these structural states is several times higher than that in the initial state.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Strengthening mechanism and martensite transformation behavior in grain-refined low-Ni austenitic stainless steel
    Cho, Yeonggeun
    Cho, Hyung-Jun
    Noh, Han-Seop
    Kim, Sung-Ho
    Kim, Sung-Joon
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 916
  • [22] Hot Deformation Behavior and Processing Maps of Cr-Ni-Mn-N Austenitic Stainless Steel
    Bao Er
    Wang Mingjia
    Wang Zixi
    He Huan
    PHYSICAL AND NUMERICAL SIMULATION OF MATERIAL PROCESSING VI, PTS 1 AND 2, 2012, 704-705 : 210 - +
  • [23] A simulation of Cr depletion in austenitic stainless steel with cellular automaton
    Yu, Xiaofei
    Chen, Shenhao
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (04) : 899 - 904
  • [24] Microstructure and crack resistance of low carbon Cr-Ni and Cr-Ni-W steel after austempering
    Avdjieva, Tatyana B.
    Tsutsumanova, Gichka G.
    Russev, Stoyan N.
    Staevski, Konstantin G.
    OPEN ENGINEERING, 2013, 3 (03): : 484 - 491
  • [25] Microstructure and Phase Composition of a Gradient Material “Stainless Steel/Cr-Ni Alloy” Produced by Electron-Beam Additive Manufacturing
    K. A. Reunova
    E. G. Astafurova
    V. A. Moskvina
    S. V. Astafurov
    M. Yu. Panchenko
    E. V. Melnikov
    E. A. Kolubaev
    Russian Physics Journal, 2022, 65 : 771 - 777
  • [26] Microstructure and Phase Composition of a Gradient Material "Stainless Steel/Cr-Ni Alloy" Produced by Electron-Beam Additive Manufacturing
    Reunova, K. A.
    Astafurova, E. G.
    Moskvina, V. A.
    Astafurov, S., V
    Panchenko, M. Yu
    Melnikov, E., V
    Kolubaev, E. A.
    RUSSIAN PHYSICS JOURNAL, 2022, 65 (05) : 771 - 777
  • [27] Accelerated creep behavior of Nb and Cu added 18Cr-8Ni austenitic stainless steel
    Bagui, Sumanta
    Laha, Kinkar
    Mitra, Rahul
    Tarafder, Soumitra
    MATERIALS RESEARCH EXPRESS, 2018, 5 (11):
  • [28] Cryorolling effect on microstructure and mechanical properties of Fe-25Cr-20Ni austenitic stainless steel
    Xiong, Yi
    He, Tiantian
    Wang, Junbei
    Lu, Yan
    Chen, Lufei
    Ren, Fengzhang
    Liu, Yuliang
    Volinsky, Alex A.
    MATERIALS & DESIGN, 2015, 88 : 398 - 405
  • [29] Effects of pre-creep on dislocation and tensile property of Cr-Ni steel
    Pei, Hai-Xiang
    Yang, Xiao-Min
    Fang, Xu-Dong
    Zhao, Yu-Hong
    Huo, Hua
    MATERIALS RESEARCH EXPRESS, 2021, 8 (01)
  • [30] A unified life prediction model for 316L austenitic stainless steel under isothermal, thermomechanical fatigue and creep-thermomechanical fatigue loadings
    Yin, Peng
    Zhang, Wei
    Yang, Qiaofa
    Chen, Xinghui
    Liang, Fei
    Chang, Le
    Zhou, Changyu
    ENGINEERING FRACTURE MECHANICS, 2025, 319