Process optimization for producing hierarchical porous bamboo-derived carbon materials with ultrahigh specific surface area for lithium-sulfur batteries

被引:58
作者
Yan, Yinglin [1 ]
Shi, Mangmang [1 ]
Wei, Yiqi [1 ]
Zhao, Chao [2 ]
Carnie, Matt [2 ]
Yang, Rong [1 ]
Xu, Yunhua [1 ]
机构
[1] Xian Univ Technol, Inst Chem Power Sources, Sch Mat Sci & Engn, 5 South Jinhua Rd, Xian 710048, Shaanxi, Peoples R China
[2] Swansea Univ, Coll Engn, Mat Res Ctr, Bay Campus,Fabian Way, Swansea SA1 8EN, W Glam, Wales
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Lithium-sulfur batteries; Bamboo strip; Biomass; High specific surface area; LI-S BATTERIES; BIOMASS; COMPOSITES; MEMBRANE; CATHODES; SODIUM; ANODES;
D O I
10.1016/j.jallcom.2017.11.212
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bamboo derived porous carbon materials, as inexpensive and environmentally friendly, microporous material sources, have been attracting enthusiastic attention for energy storage applications. In this work three different processes were employed to prepare three types of bamboo derived porous carbon materials. Among them, the sample prepared via a one-step activation method delivered the largest total pore volume (1.146 cm(3) g(-1)) and the largest specific surface area (1824.4 m(2) g(-1)) owning to a hierarchical porous structure. After the sample was used to encapsulate sulfur (S) to prepare carbon/S composite as cathodes for Li-S batteries. The composite loaded with 58.5 wt% S exhibited a high initial capacity of 1453 mAh g(-1) at a rate of 0.1 C (1 C = 1675 mA g(-1)). A reversible capacity of 255 mAh g(-1) was maintained after 500 cycles at 1 C with a capacity decay rate of only 0.0016% per cycle. This suggests that the bamboo derived porous carbon could be a promising conductive carbon matrix for carbon/S composite cathodes in Li-S batteries. (c) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 24
页数:9
相关论文
共 35 条
[1]  
[Anonymous], ARAB J CHEM
[2]   Li-O2 and Li-S batteries with high energy storage (vol 11, pg 19, 2012) [J].
Bruce, Peter G. ;
Freunberger, Stefan A. ;
Hardwick, Laurence J. ;
Tarascon, Jean-Marie .
NATURE MATERIALS, 2012, 11 (02)
[3]   Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials [J].
Chen, Hao ;
Liu, Duo ;
Shen, Zhehong ;
Bao, Binfu ;
Zhao, Shuyan ;
Wu, Limin .
ELECTROCHIMICA ACTA, 2015, 180 :241-251
[4]   A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries [J].
Chen, Wei ;
Qian, Tao ;
Xiong, Jie ;
Xu, Na ;
Liu, Xuejun ;
Liu, Jie ;
Zhou, Jinqiu ;
Shen, Xiaowei ;
Yang, Tingzhou ;
Chen, Yu ;
Yan, Chenglin .
ADVANCED MATERIALS, 2017, 29 (12)
[5]   Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (09) :1360-1365
[6]   Encapsulating Sulfur into Hierarchically Ordered Porous Carbon as a High-Performance Cathode for Lithium-Sulfur Batteries [J].
Ding, Bing ;
Yuan, Changzhou ;
Shen, Laifa ;
Xu, Guiyin ;
Nie, Ping ;
Zhang, Xiaogang .
CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (03) :1013-1019
[7]   A conductive interwoven bamboo carbon fiber membrane for Li-S batteries [J].
Gu, Xingxing ;
Lai, Chao ;
Liu, Fei ;
Yang, Wenlong ;
Hou, Yanglong ;
Zhang, Shanqing .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (18) :9502-9509
[8]   Microporous bamboo biochar for lithium-sulfur batteries [J].
Gu, Xingxing ;
Wang, Yazhou ;
Lai, Chao ;
Qiu, Jingxia ;
Li, Sheng ;
Hou, Yanglong ;
Martens, Wayde ;
Mahmood, Nasir ;
Zhang, Shanqing .
NANO RESEARCH, 2015, 8 (01) :129-139
[9]   Microporous carbon nanosheets derived from corncobs for lithium-sulfur batteries [J].
Guo, Jinxin ;
Zhang, Jun ;
Jiang, Fei ;
Zhao, Saihua ;
Su, Qingmei ;
Du, Gaohui .
ELECTROCHIMICA ACTA, 2015, 176 :853-860
[10]  
Huang CC, 2016, INT J ELECTROCHEM SC, V11, P754