The Curve Shortening Flow in the Metric-Affine Plane

被引:0
|
作者
Rovenski, Vladimir [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
curve shortening flow; affine connection; curvature; convex;
D O I
10.3390/math8050701
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigated, for the first time, the curve shortening flow in the metric-affine plane and prove that under simple geometric condition (when the curvature of initial curve dominates the torsion term) it shrinks a closed convex curve to a "round point" in finite time. This generalizes the classical result by M. Gage and R.S. Hamilton about convex curves in a Euclidean plane.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Singularities of the Curve Shortening Flow in a Riemannian Manifold
    Pan, Shu Jing
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (11) : 1783 - 1793
  • [22] SOLITON SOLUTIONS TO THE CURVE SHORTENING FLOW ON THE SPHERE
    Santos dos Reis, Hiuri Fellipe
    Tenenblat, Keti
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (11) : 4955 - 4967
  • [23] Linearised euclidean shortening flow of curve geometry
    Salden, AH
    Romeny, BMT
    Viergever, MA
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1999, 34 (01) : 29 - 67
  • [24] Convex ancient solutions to curve shortening flow
    Bourni, Theodora
    Langford, Mat
    Tinaglia, Giuseppe
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (04)
  • [25] A curve shortening flow rule for closed embedded plane curves with a prescribed rate of change in enclosed area
    Dallaston, Michael C.
    McCue, Scott W.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2185):
  • [26] Legendrian curve shortening flow in R3
    Drugan, Gregory
    He, Weiyong
    Warren, Micah W.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2018, 26 (04) : 759 - 785
  • [27] Curve shortening flow in arbitrary dimensional Euclidian space
    Yang, YY
    Jiao, XX
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) : 715 - 722
  • [28] Rotational Solitons for the Curve Shortening Flow on Revolution Surfaces
    Leandro, B.
    Novais, R.
    Reis, H.
    RESULTS IN MATHEMATICS, 2024, 79 (05)
  • [29] Discrete anisotropic curve shortening flow in higher codimension
    Deckelnick, Klaus
    Nuernberg, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 36 - 67
  • [30] The Blow up Analysis of the General Curve Shortening Flow
    Huang, Rong Li
    Bao, Ji Guang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) : 2107 - 2128