Dynamical encoding by networks of competing neuron groups: Winnerless competition

被引:283
作者
Rabinovich, M [1 ]
Volkovskii, A
Lecanda, P
Huerta, R
Abarbanel, HDI
Laurent, G
机构
[1] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[2] Univ Autonoma Madrid, ETS Ingn Informat, GNB, E-28049 Madrid, Spain
[3] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[4] Univ Calif San Diego, Scripps Inst Oceanog, Dept Phys, La Jolla, CA 93093 USA
[5] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 93093 USA
[6] CALTECH, Div Biol, Pasadena, CA 91125 USA
关键词
D O I
10.1103/PhysRevLett.87.068102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Following studies of olfactory processing in insects and fish, we investigate neural networks whose dynamics in phase space is represented by orbits near the heteroclinic connections between saddle regions (fixed points or limit cycles). These networks encode input information as trajectories along the heteroclinic connections. If there are N neurons in the network, the capacity is approximately e(N - 1)!, i.e., much larger than that of most traditional network structures. We show that a small winnerless competition network composed of FitzHugh-Nagumo spiking neurons efficiently transforms input information into a spatiotemporal output.
引用
收藏
页码:681021 / 681024
页数:4
相关论文
共 15 条