Experimental evaluation of the tensile bonding strength of the basalt fiber-reinforced polymer-concrete interface

被引:7
作者
Chhorn, Buntheng [1 ]
Jung, WooYoung [1 ]
机构
[1] Gangneung Wonju Natl Univ, Dept Civil Engn, Jukheon Gil 7, Gangneung Si 25457, Gangwon Do, South Korea
基金
新加坡国家研究基金会;
关键词
basalt fiber-reinforced polymer; bonding strength; crack width; freezing-thawing; high temperature; RC BEAMS; FRP; TEMPERATURE; DURABILITY; BEHAVIOR; DEGRADATION; CFRP; SYSTEMS;
D O I
10.1177/1369433220934909
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The bonding performance of basalt fiber-reinforced polymer and concrete substrate has a significant effect on the reliability of externally strengthened existing concrete structure, due to being the most vulnerable element to failure in this fiber-reinforced polymer-concrete strengthening system. Its failure can result in the failure of the whole structure. Although many previous researchers have been interested in the tensile bonding strength of carbon fiber-reinforced polymer and glass fiber-reinforced polymer-concrete interface, that of basalt fiber-reinforced polymer-concrete interface has been very limited. Thus, the objective of this study is to experimentally assess the tensile bonding strength of the basalt fiber-reinforced polymer-concrete interface. The effects of high temperature, freezing-thawing cycles, type of resin, and concrete crack widths on the tensile bonding strength are also investigated. The pull-off experiment is conducted according to ASTM D7522/D7522M-15. A total of 205 core specimens of 50 mm diameter and 10 mm depth were taken from 41 concrete beams. The experimental results illustrate that both freezing-thawing and high-temperature condition have a substantial effect on the bonding strength of the basalt fiber-reinforced polymer-concrete interface. Bonding strength was decreased within the range of about 9%-30% when the number of freezing-thawing cycles increases from 100 to 300; likewise, it was decreased up to 30% when the exposure temperature rises to 200 degrees C. Also, the specimens which were repaired to close their cracks by epoxy resin had no significant effect on the bonding strength of basalt fiber-reinforced polymer-concrete interface, when the specimens had crack width of less than 1.5 mm.
引用
收藏
页码:3323 / 3334
页数:12
相关论文
共 50 条
  • [31] Experimental study on the bond degradation of basalt fiber reinforced polymer grid-concrete interface under fatigue loading
    Wen, Bo
    Wan, Chun-Feng
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 270
  • [32] A two-scale damage model for high-cycle fatigue at the fiber-reinforced polymer-concrete interface
    Mahal, M.
    Blanksvard, T.
    Taljsten, B.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2016, 116 : 12 - 20
  • [33] Compression Behavior of Basalt Fiber-Reinforced Polymer Tube-Confined Coconut Fiber-Reinforced Concrete
    Lv, Yang
    Wu, Xueqian
    Zhu, Yuhao
    Liang, Xiao
    Cheng, Quanxi
    Gao, Mengran
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
  • [34] Behavior of Reinforced Concrete Beams without Stirrups and Strengthened with Basalt Fiber-Reinforced Polymer Sheets
    Zhang, Wei
    Kang, Shuaiwen
    Huang, Yiqun
    Liu, Xiang
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2023, 27 (02)
  • [35] Flexural Behaviors of ECC and Concrete/ECC Composite Beams Reinforced with Basalt Fiber-Reinforced Polymer
    Yuan, Fang
    Pan, Jinlong
    Leung, C. K. Y.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2013, 17 (05) : 591 - 602
  • [36] Investigation on bonding behavior of basalt fiber reinforced polymer (BFRP) sheet reinforced concrete beam
    He, Jintao
    Lei, Dong
    She, Zesheng
    Xi, Bin
    JOURNAL OF BUILDING ENGINEERING, 2023, 75
  • [37] Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete
    Jalasutram, Sruthi
    Sahoo, Dipti Ranjan
    Matsagar, Vasant
    STRUCTURAL CONCRETE, 2017, 18 (02) : 292 - 302
  • [38] Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength
    Behnood, Ali
    Verian, Kho Pin
    Gharehveran, Mahsa Modiri
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 98 : 519 - 529
  • [39] Determination of Tensile Strength Perpendicular to the Fibers of Wooden Materials Reinforced with Basalt, Glass Fiber-Reinforced Polymer, and Plaster Mesh
    Karaman, Abdurrahman
    Yesil, Hueseyin
    Yazici, Hikmet
    BIORESOURCES, 2025, 20 (01): : 42 - 56
  • [40] Pullout behaviors of basalt fiber-reinforced polymer bars with mechanical anchorages for concrete structures exposed to seawater
    Shi, Jianzhe
    Sun, Shenpeng
    Cao, Xuyang
    Wang, Haitao
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 373