Index theory for basic Dirac operators on Riemannian foliations

被引:0
作者
Bruening, Jochen [1 ]
Kamber, Franz W. [2 ]
Richardson, Ken [3 ]
机构
[1] Humboldt Univ, Inst Math, Unter den Linden 6, D-10099 Berlin, Germany
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Texas Christian Univ, Dept Math, Ft Worth, TX 76129 USA
来源
NONCOMMUTATIVE GEOMETRY AND GLOBAL ANALYSIS | 2011年 / 546卷
关键词
foliation; basic; index; transversally elliptic; ELLIPTIC-OPERATORS; SPECTRAL ASYMMETRY; V-MANIFOLDS; GEOMETRY; DUALITY; COMPACT; ASYMPTOTICS; EIGENVALUE; FLOWS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a formula for the analytic index of a basic Dirac-type operator on a Riemannian foliation, solving a problem that has been open for many years. We also consider more general indices given by twisting the basic Dirac operator by a representation of the orthogonal group. The formula is a sum of integrals over blowups of the strata of the foliation and also involves eta invariants of associated elliptic operators. As a special case, a Gauss-Bonnet formula for the basic Euler characteristic is obtained using two independent proofs.
引用
收藏
页码:39 / +
页数:4
相关论文
共 58 条
[41]  
Kordyukov YA, 2009, RUSS MATH SURV+, V64, P273, DOI [10.1070/RM2009v064n02ABEH004616, 10.4213/rm9283]
[42]  
Lawson H.B., 1989, Princeton Mathematical Series
[43]   Lichnerowicz and obata theorems for foliations [J].
Lee, J ;
Richardson, K .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 206 (02) :339-357
[44]   Riemannian foliations and eigenvalue comparison [J].
Lee, JM ;
Richardson, K .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (06) :497-525
[45]   Mean curvature of Riemannian foliations [J].
March, P ;
MinOo, M ;
Ruh, EA .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (01) :95-105
[46]   DUALITY AND MINIMALITY IN RIEMANNIAN FOLIATIONS [J].
MASA, X .
COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (01) :17-27
[47]  
Mason A, 2000, HOUSTON J MATH, V26, P481
[48]  
MOLINO P, 2000, PROGR MATH, V73
[49]   The basic Laplacian of a Riemannian foliation [J].
Park, E ;
Richardson, K .
AMERICAN JOURNAL OF MATHEMATICS, 1996, 118 (06) :1249-1275
[50]   The asymptotics of heat kernels on Riemannian foliations [J].
Richardson, K .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (02) :356-401