LiBr-LiF-Rich Solid-Electrolyte Interface Layer on Lithiophilic 3D Framework for Enhanced Lithium Metal Anode

被引:35
|
作者
Liu, Ping [1 ]
Su, Han [1 ]
Liu, Yu [1 ]
Zhong, Yu [1 ]
Xian, Chunxiang [1 ]
Zhang, Yongqi [2 ,3 ]
Wang, Xiuli [1 ]
Xia, Xinhui [1 ,4 ]
Tu, Jiangping [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313000, Peoples R China
[3] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Huzhou 313000, Peoples R China
[4] Fuzhou Univ, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Peoples R China
来源
SMALL STRUCTURES | 2022年 / 3卷 / 06期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
artificial solid-electrolyte interphases; cobalt oxide nanosheets; lithium metal anode; sponge nickel; spray quenching; ROBUST; COO; HOST;
D O I
10.1002/sstr.202200010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metallic lithium anode is considered as an ideal electrode for high-energy-density batteries. However, the uncontrollable growth of lithium dendrites, large volumetric change, and interfacial issues during the repeated plating and stripping processes severely hinder its practical applications. Herein, CoO nanosheets-decorated sponge nickel are synthesized as a host skeleton for thermal-injected Li (LCN). The conductive 3D matrix serves as a fast electron transfer path to decrease polarization and homogenize the local current density to suppress the Li dendrite. Moreover, the confined framework can relieve the volume change of lithium metal anodes. Furthermore, an artificial LiBr-LiF-rich solid-electrolyte interface (SEI) layer is constructed at the surface of LCN by the in situ spray-quenching method. Such an inorganic-rich SEI provides fast longitudinal Li+ transportation and facilitates the uniform deposition of lithium. Accordingly, the SEI@Li/CoO@SN (SLCN) symmetrical cells exhibit a steady overpotential within 35 mV for 1700 h at 1 mA cm(-2)/1 cm(-2) and achieve high Coulombic efficiency of 99.06% after 150 cycles. Matching with the sulfur cathode, the full cells present promoted rate performance and cycling stability and show a high initial capacity of 1274 mAh g(-1) and good capacity retention.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] In-situ formation of LiF-rich solid-electrolyte interphases on 3D lithiophilic skeleton for stable lithium metal anode
    Huang, Kai
    Song, Shipai
    Xue, Zhiyu
    Niu, Xiaobin
    Peng, Xiaoli
    Xiang, Yong
    ENERGY STORAGE MATERIALS, 2023, 55 : 301 - 311
  • [2] Forming Solid-Electrolyte Interphases with Rich Grain Boundaries on 3D Lithiophilic Skeleton for Low-Temperature Lithium Metal Batteries
    Wang, Dongdong
    Lv, Dan
    Liu, Hongxia
    Yang, Jian
    Qian, Yitian
    Chen, Zheng
    Energy Storage Materials, 2022, 49 : 454 - 462
  • [3] Forming Solid-Electrolyte Interphases with Rich Grain Boundaries on 3D Lithiophilic Skeleton for Low-Temperature Lithium Metal Batteries
    Wang, Dongdong
    Lv, Dan
    Liu, Hongxia
    Yang, Jian
    Qian, Yitian
    Chen, Zheng
    ENERGY STORAGE MATERIALS, 2022, 49 : 454 - 462
  • [4] Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries
    Chi, Shang-Sen
    Liu, Yongchang
    Zhao, Ning
    Guo, Xiangxin
    Nan, Ce-Wen
    Fan, Li-Zhen
    ENERGY STORAGE MATERIALS, 2019, 17 : 309 - 316
  • [5] Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework
    Liu, Songsong
    Ma, Yulin
    Zhou, Zhenxin
    Lou, Shuaifeng
    Huo, Hua
    Zuo, Pengjian
    Wang, Jiajun
    Du, Chunyu
    Yin, Geping
    Gao, Yunzhi
    ENERGY STORAGE MATERIALS, 2020, 33 : 423 - 431
  • [6] Highly stable lithium metal anode enabled by constructing lithiophilic 3D interphase on robust framework
    Kang, Rongkai
    Du, Yiqun
    Zhou, Wei
    Zhang, Dongmei
    Sun, Chenyi
    Wang, Han
    Chen, Guowen
    Zhang, Jianxin
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [7] Decoupling of the Impedance of Solid-Electrolyte Interface and Plated Lithium: Implications for Anode-Free Lithium Metal Battery Technology
    Zhou, Bingxin
    Stosevski, Ivan
    Bonakdarpour, Arman
    Wilkinson, David P.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (13) : 6890 - 6895
  • [8] A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode
    Liu, Yuanming
    Qin, Xianying
    Zhang, Shaoqiong
    Zhang, Lihan
    Kang, Feiyu
    Chen, Guohua
    Duan, Xiangfeng
    Li, Baohua
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (21) : 13225 - 13233
  • [9] Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode
    Qian, Yi
    Wei, Chuanliang
    Tian, Yuan
    Xi, Baojuan
    Xiong, Shenglin
    Feng, Jinkui
    Qian, Yitai
    CHEMICAL ENGINEERING JOURNAL, 2021, 421
  • [10] Synergistic dual electrolyte additives for fluoride rich solid-electrolyte interface on Li metal anode surface: Mechanistic understanding of electrolyte decomposition
    Pan, Shih-Huang
    Nachimuthu, Santhanamoorthi
    Hwang, Bing Joe
    Brunklaus, Gunther
    Jiang, Jyh-Chiang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 649 : 804 - 814