Magnetic flux conservation in an imploding plasma

被引:8
作者
Garcia-Rubio, F. [1 ]
Sanz, J. [1 ]
Betti, R. [2 ]
机构
[1] Univ Politecn Madrid, ETSI Aeronaut & Espacio, E-28040 Madrid, Spain
[2] Univ Rochester, Dept Mech Engn & Phys & Astron, Lab Laser Energet, Rochester, NY 14623 USA
关键词
INERTIAL CONFINEMENT FUSION; HOT-SPOT DYNAMICS; DECELERATION-PHASE; TARGET FUSION; CAPSULES;
D O I
10.1103/PhysRevE.97.011201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The theory ofmagnetic flux conservation is developed for a subsonic plasma implosion and used to describe the magnetic flux degradation in the MagLIF concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. Depending on the initial magnetic Lewis and Peclet numbers and the electron Hall parameter, the implosion falls into either a superdiffusive regime in which the magnetization decreases or a magnetized regime in which the magnetization increases. Scaling laws for magnetic field, temperature, and magnetic flux losses in the hot spot of radius R are obtained for both regimes. The Nernst velocity convects the magnetic field outwards, pushing it against the liner and enhancing the magnetic field diffusion, thereby reducing the magnetic field compression and degrading the implosion performance. However, in the magnetized regime, the core of the hot spot becomes magnetically insulated and undergoes an ideal adiabatic compression (T similar to R-4/3 compared to T similar to R-2/3 without magnetic field), while the detrimental Nernst term is confined to the outer part of the hot spot. Its effect is drastically reduced, improving the magnetic flux conservation.
引用
收藏
页数:5
相关论文
共 18 条
[1]  
[Anonymous], 2004, Chest, V125
[2]  
[Anonymous], 1963, Reviews of plasma physics
[3]   Laser-driven magnetized liner inertial fusion on OMEGA [J].
Barnak, D. H. ;
Davies, J. R. ;
Betti, R. ;
Bonino, M. J. ;
Campbell, E. M. ;
Glebov, V. Yu. ;
Harding, D. R. ;
Knauer, J. P. ;
Regan, S. P. ;
Sefkow, A. B. ;
Harvey-Thompson, A. J. ;
Peterson, K. J. ;
Sinars, D. B. ;
Slutz, S. A. ;
Weis, M. R. ;
Chang, P-Y .
PHYSICS OF PLASMAS, 2017, 24 (05)
[4]   Ignition conditions for magnetized target fusion in cylindrical geometry [J].
Basko, MM ;
Kemp, AJ ;
Meyer-ter-Vehn, J .
NUCLEAR FUSION, 2000, 40 (01) :59-68
[5]   Hot-spot dynamics and deceleration-phase Rayleigh-Taylor instability of imploding inertial confinement fusion capsules [J].
Betti, R ;
Umansky, M ;
Lobatchev, V ;
Goncharov, VN ;
McCrory, RL .
PHYSICS OF PLASMAS, 2001, 8 (12) :5257-5267
[6]   Fusion Yield Enhancement in Magnetized Laser-Driven Implosions [J].
Chang, P. Y. ;
Fiksel, G. ;
Hohenberger, M. ;
Knauer, J. P. ;
Betti, R. ;
Marshall, F. J. ;
Meyerhofer, D. D. ;
Seguin, F. H. ;
Petrasso, R. D. .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[7]   Laser-driven magnetized liner inertial fusion [J].
Davies, J. R. ;
Barnak, D. H. ;
Betti, R. ;
Campbell, E. M. ;
Chang, P. -Y. ;
Sefkow, A. B. ;
Peterson, K. J. ;
Sinars, D. B. ;
Weis, M. R. .
PHYSICS OF PLASMAS, 2017, 24 (06)
[8]   Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface [J].
Garcia-Rubio, F. ;
Sanz, J. .
PHYSICS OF PLASMAS, 2017, 24 (07)
[9]   A multiscale analysis of the hotspot dynamics during the deceleration phase of inertial confinement capsules [J].
Garnier, J ;
Cherfils, C .
PHYSICS OF PLASMAS, 2005, 12 (01) :1-4
[10]   Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion [J].
Gomez, M. R. ;
Slutz, S. A. ;
Sefkow, A. B. ;
Sinars, D. B. ;
Hahn, K. D. ;
Hansen, S. B. ;
Harding, E. C. ;
Knapp, P. F. ;
Schmit, P. F. ;
Jennings, C. A. ;
Awe, T. J. ;
Geissel, M. ;
Rovang, D. C. ;
Chandler, G. A. ;
Cooper, G. W. ;
Cuneo, M. E. ;
Harvey-Thompson, A. J. ;
Herrmann, M. C. ;
Hess, M. H. ;
Johns, O. ;
Lamppa, D. C. ;
Martin, M. R. ;
McBride, R. D. ;
Peterson, K. J. ;
Porter, J. L. ;
Robertson, G. K. ;
Rochau, G. A. ;
Ruiz, C. L. ;
Savage, M. E. ;
Smith, I. C. ;
Stygar, W. A. ;
Vesey, R. A. .
PHYSICAL REVIEW LETTERS, 2014, 113 (15)