Platinum-group elements and gold in sulfide melts from modern arc basalt (Tolbachik volcano, Kamchatka)

被引:36
|
作者
Zelenski, M. [1 ]
Kamenetsky, V. S. [1 ,2 ,3 ]
Mavrogenes, J. A. [4 ]
Danyushevsky, L. V. [2 ,3 ]
Matveev, D. [5 ]
Gurenko, A. A. [6 ]
机构
[1] RAS, Inst Expt Mineral, Chernogolovka 142432, Russia
[2] Univ Tasmania, Earth Sci, Private Bag 79, Hobart, Tas 7001, Australia
[3] Univ Tasmania, CODES, Private Bag 79, Hobart, Tas 7001, Australia
[4] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 2601, Australia
[5] RAS, Inst Solid State Phys, Chernogolovka 142432, Russia
[6] Univ Lorraine, CRPG, UMR 7358, F-54501 Vandoeuvre Les Nancy, France
基金
俄罗斯科学基金会;
关键词
Sulfide; Immiscibility; Platinum-group metals; Chalcophile metals; Island-arc magma; Tolbachik volcano; MAGMATIC SULFIDE; GROUP MINERALS; BUSHVELD COMPLEX; FISSURE ERUPTION; METAL ENRICHMENT; SILICATE MELTS; TRACE-ELEMENTS; MERENSKY REEF; NOBLE-METALS; ICP-MS;
D O I
10.1016/j.lithos.2017.08.012
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sulfide melt inclusions entrapped in primitive olivine phenocrysts can be used to understand the compositions of early sulfide melts that may ultimately contribute to magmatic sulfide ore deposits. Sulfide globules hosted in olivine (86-92 mol% Fo) from the Tolbachik basalt (the 1941 eruption) are characterized in terms of their major and trace element abundances using electron microscopy and LA-ICP-MS analysis. Distribution of major elements within individual sulfide globules varies from homogeneous to heterogeneous. Phases include monosulfide solid solution (MSS) and intermediate solid solution (ISS) intergrowths and exsolved low temperature minerals such as pyrrhotite, pentlandite, chalcopyrite and cubanite. Trace elements (platinum group elements - PGE, Ag, Te, Au, Pb and Bi) are also present in solid solution in sulfide phases and as micron sized particles ("nuggets"). Such nuggets of dominantly Au, Pt, Au-Pd and Pd-Te are contained randomly within sulfide matrices or, more commonly, at phase boundaries. Nuggets are also attached to outer surfaces of sulfide globules. Concentrations of PGE in sulfides follow a log normal distribution over four orders of magnitude. The highest measured noble metal concentrations in the analyzed globules (436 ppm Au + PGE) are 133 ppm Au, 115 ppm Pt and 299 ppm Pd, whereas 40% of globules have <15 ppm of noble metals. Gold and PGE concentrations correlate, suggesting these elements were concentrated by the same process(es). We propose that a number of anomalous concentrations of one or several noble metals in the analyzed globules can be best explained by entrapment of Au-PGE-rich particles (solid or liquid) from the silicate melt. Although the individual Tolbachik sulfide globules have variable PGE abundances, their mean composition resembles those of major PGE-sulfide ore deposits (e.g., Norilsk, Sudbury, Platreef and Merensky Reef). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 188
页数:17
相关论文
共 50 条
  • [1] Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts
    Zelenski, M.
    Kamenetsky, V. S.
    Mavrogenes, J. A.
    Gurenko, A. A.
    Danyushevsky, L. V.
    CHEMICAL GEOLOGY, 2018, 478 : 102 - 111
  • [2] Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: Evidence for minor cryptic sulfide fractionation in primitive arc magmas
    Nekrylov, Nikolai
    Kamenetsky, Vadim S.
    Savelyev, Dmitry P.
    Gorbach, Natalia, V
    Kontonikas-Charos, Alkiviadis
    Palesskii, Stanislav, V
    Shcherbakov, Vasily D.
    Kutyrev, Anton, V
    Savelyeva, Olga L.
    Korneeva, Alina A.
    Kozmenko, Olga A.
    Zelenski, Michael E.
    LITHOS, 2022, 412-413
  • [3] Genesis of volatiles in suprasubduction basaltic melts from Tolbachik Volcano, Kamchatka
    Dobretsov, N. L.
    Simonov, V. A.
    Kotlyarov, A. V.
    Stupakov, S. I.
    RUSSIAN GEOLOGY AND GEOPHYSICS, 2017, 58 (08) : 869 - 886
  • [4] Noble Metals in Arc Basaltic Magmas Worldwide: A Case Study of Modern and Pre-Historic Lavas of the Tolbachik Volcano, Kamchatka
    Kutyrev, Anton
    Zelenski, Michael
    Nekrylov, Nikolai
    Savelyev, Dmitry
    Kontonikas-Charos, Alkiviadis
    Kamenetsky, Vadim S.
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [5] Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt
    Kamenetsky, Vadim S.
    Zelenski, Michael
    Gurenko, Andrey
    Portnyagin, Maxim
    Ehrig, Kathy
    Kamenetsky, Maya
    Churikova, Tatiana
    Feig, Sandrin
    CHEMICAL GEOLOGY, 2017, 471 : 92 - 110
  • [6] Reprint of Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt
    Kamenetsky, Vadim S.
    Zelenski, Michael
    Gurenko, Andrey
    Portnyagin, Maxim
    Ehrig, Kathy
    Kamenetsky, Maya
    Churikova, Tatiana
    Feig, Sandrin
    CHEMICAL GEOLOGY, 2018, 478 : 112 - 130
  • [7] Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements
    Mungall, James E.
    Brenan, James M.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2014, 125 : 265 - 289
  • [8] Mineralogy and Origin of Aerosol From an Arc Basaltic Eruption: Case Study of Tolbachik Volcano, Kamchatka
    Zelenski, M.
    Kamenetsky, V. S.
    Taran, Yu
    Kovalskii, A. M.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2020, 21 (02)
  • [9] Textural, morphological and compositional varieties of modern arc sulfides: A case study of the Tolbachik volcano, Kamchatka
    Zelenski, M.
    Kamenetsky, V. S.
    Nekrylov, N.
    Abersteiner, A.
    Ehrig, K.
    Khanin, D.
    LITHOS, 2018, 318 : 14 - 29
  • [10] Langbeinite-Group Minerals and Vanthoffite from Fumarole Exhalations of the Tolbachik Volcano (Kamchatka)
    M. O. Bulakh
    I. V. Pekov
    N. N. Koshlyakova
    S. N. Britvin
    M. A. Nazarova
    Geology of Ore Deposits, 2023, 65 : 827 - 846