Infrared asymptotics of the heat kernel and nonlocal effective action

被引:2
作者
Barvinsky, AO [1 ]
Nesterov, DV [1 ]
机构
[1] PN Lebedev Phys Inst, Moscow 117924, Russia
基金
俄罗斯基础研究基金会;
关键词
effective action; nonlocal field theories; Schwinger-DeWitt expansion;
D O I
10.1007/s11232-005-0104-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review recent results in the nonperturbative theory of the heat kernel and its late-time asymptotic properties responsible for the infrared behavior of the quantum effective action for massless theories. In particular, we derive a generalization of the Coleman-Weinberg potential for theories with an inhomogeneous background held. This generalization represents a new nonlocal, nonperturbative action accounting for the effects in a, transition domain between the space-time interior and its infinity. In four dimensions, these effects delocalize the logarithmic Coleman-Weinberg potential, while in d > 4, they are dominated by anew powerlike, renormalization-independent non local structure. We also consider the nonperturbative behavior of the heat kernel in a, curved space-time with an asymptotically flat geometry. In particular, we analyze the conformal properties of the heat kernel for a conformally invariant scalar field and discuss the problem of segregating the local cosmological term from the nonlocal effective action.
引用
收藏
页码:760 / 781
页数:22
相关论文
共 44 条
[1]  
ARKANIHAMED N, 2002, HEPTH0209227
[2]   THE GENERALIZED SCHWINGER-DEWITT TECHNIQUE IN GAUGE-THEORIES AND QUANTUM-GRAVITY [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 119 (01) :1-74
[3]   Nonperturbative late time asymptotics for the heat kernel in gravity theory [J].
Barvinsky, AO ;
Gusev, YV ;
Mukhanov, VF ;
Nesterov, DV .
PHYSICAL REVIEW D, 2003, 68 (10)
[4]   Nonlocal action for long-distance modifications of gravity theory [J].
Barvinsky, AO .
PHYSICS LETTERS B, 2003, 572 (3-4) :109-116
[5]   New nonlocal effective action [J].
Barvinsky, AO ;
Mukhanov, VF .
PHYSICAL REVIEW D, 2002, 66 (06)
[6]   THE BASIS OF NONLOCAL CURVATURE INVARIANTS IN QUANTUM-GRAVITY THEORY - 3RD-ORDER [J].
BARVINSKY, AO ;
GUSEV, YV ;
VILKOVISKY, GA ;
ZHYTNIKOV, VV .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (07) :3525-3542
[7]   ASYMPTOTIC BEHAVIORS OF THE HEAT KERNEL IN COVARIANT PERTURBATION-THEORY [J].
BARVINSKY, AO ;
GUSEV, YV ;
VILKOVISKY, GA ;
ZHYTNIKOV, VV .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (07) :3543-3559
[8]   COVARIANT PERTURBATION-THEORY .2. 2ND-ORDER IN THE CURVATURE - GENERAL ALGORITHMS [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
NUCLEAR PHYSICS B, 1990, 333 (02) :471-511
[9]   BEYOND THE SCHWINGER-DEWITT TECHNIQUE - CONVERTING LOOPS INTO TREES AND IN-IN CURRENTS [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
NUCLEAR PHYSICS B, 1987, 282 (01) :163-188
[10]  
BARVINSKY AO, 1993, COVARIANT PERTURBATI