Chaos and quantum-classical correspondence via phase-space distribution functions

被引:23
作者
Gong, JB [1 ]
Brumer, P [1 ]
机构
[1] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 06期
关键词
D O I
10.1103/PhysRevA.68.062103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum-classical correspondence in conservative chaotic Hamiltonian systems is examined using a uniform structure measure for quantal and classical phase-space distribution functions. The similarities and differences between quantum and classical time-evolving distribution functions are exposed by both analytical and numerical means. The quantum-classical correspondence of low-order statistical moments is also studied. The results shed considerable light on quantum-classical correspondence.
引用
收藏
页数:12
相关论文
共 34 条
[1]   INADEQUACY OF EHRENFEST THEOREM TO CHARACTERIZE THE CLASSICAL REGIME [J].
BALLENTINE, LE ;
YANG, YM ;
ZIBIN, JP .
PHYSICAL REVIEW A, 1994, 50 (04) :2854-2859
[2]   CONDITION OF STOCHASTICITY IN QUANTUM NON-LINEAR SYSTEMS [J].
BERMAN, GP ;
ZASLAVSKY, GM .
PHYSICA A, 1978, 91 (3-4) :450-460
[3]   QUANTUM MAPS [J].
BERRY, MV ;
BALAZS, NL ;
TABOR, M ;
VOROS, A .
ANNALS OF PHYSICS, 1979, 122 (01) :26-63
[4]   DECOHERENCE, CHAOS, AND THE 2ND LAW - COMMENT [J].
CASATI, G ;
CHIRIKOV, BV .
PHYSICAL REVIEW LETTERS, 1995, 75 (02) :350-350
[5]   QUANTUM AND CLASSICAL DYNAMICS IN THE STADIUM BILLIARD [J].
CHRISTOFFEL, KM ;
BRUMER, P .
PHYSICAL REVIEW A, 1986, 33 (02) :1309-1321
[6]   GENERALIZED UNCERTAINTY RELATION AND CORRELATED COHERENT STATES [J].
DODONOV, VV ;
KURMYSHEV, EV ;
MANKO, VI .
PHYSICS LETTERS A, 1980, 79 (2-3) :150-152
[7]   QUANTUM-MECHANICS OF A CLASSICALLY CHAOTIC SYSTEM - OBSERVATIONS ON SCARS, PERIODIC-ORBITS, AND VIBRATIONAL ADIABATICITY [J].
ECKHARDT, B ;
HOSE, G ;
POLLAK, E .
PHYSICAL REVIEW A, 1989, 39 (08) :3776-3793
[8]  
Emerson J, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.026217
[9]   Characteristics of quantum-classical correspondence for two interacting spins [J].
Emerson, J ;
Ballentine, LE .
PHYSICAL REVIEW A, 2001, 63 (05) :521031-5210316
[10]   SOLUTION OF THE SCHRODINGER-EQUATION BY A SPECTRAL METHOD [J].
FEIT, MD ;
FLECK, JA ;
STEIGER, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 47 (03) :412-433