Thermal States as Universal Resources for Quantum Computation with Always-On Interactions

被引:35
作者
Li, Ying [1 ]
Browne, Daniel E. [1 ,2 ]
Kwek, Leong Chuan [1 ,3 ,4 ]
Raussendorf, Robert [5 ]
Wei, Tzu-Chieh [5 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117548, Singapore
[2] UCL, Dept Phys & Astron, London WC1E 6BT, England
[3] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore
[4] Nanyang Technol Univ, Inst Adv Studies, Singapore, Singapore
[5] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
BOND GROUND-STATES; TRAPPED IONS; ANTIFERROMAGNETS; COMPUTER; PHYSICS; GASES; PHASE;
D O I
10.1103/PhysRevLett.107.060501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement-based quantum computation utilizes an initial entangled resource state and proceeds with subsequent single-qubit measurements. It is implicitly assumed that the interactions between qubits can be switched off so that the dynamics of the measured qubits do not affect the computation. By proposing a model spin Hamiltonian, we demonstrate that measurement-based quantum computation can be achieved on a thermal state with always-on interactions. Moreover, computational errors induced by thermal fluctuations can be corrected and thus the computation can be executed fault tolerantly if the temperature is below a threshold value.
引用
收藏
页数:4
相关论文
共 35 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[3]   Gapped Two-Body Hamiltonian for Continuous-Variable Quantum Computation [J].
Aolita, Leandro ;
Roncaglia, Augusto J. ;
Ferraro, Alessandro ;
Acin, Antonio .
PHYSICAL REVIEW LETTERS, 2011, 106 (09)
[4]   An open-system quantum simulator with trapped ions [J].
Barreiro, Julio T. ;
Mueller, Markus ;
Schindler, Philipp ;
Nigg, Daniel ;
Monz, Thomas ;
Chwalla, Michael ;
Hennrich, Markus ;
Roos, Christian F. ;
Zoller, Peter ;
Blatt, Rainer .
NATURE, 2011, 470 (7335) :486-491
[5]   Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation [J].
Bartlett, Stephen D. ;
Rudolph, Terry .
PHYSICAL REVIEW A, 2006, 74 (04)
[6]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[7]   Measurement-based quantum computer in the gapped ground state of a two-body Hamiltonian [J].
Brennen, Gavin K. ;
Miyake, Akimasa .
PHYSICAL REVIEW LETTERS, 2008, 101 (01)
[8]  
Briegel HJ, 2009, NAT PHYS, V5, P19, DOI [10.1038/NPHYS1157, 10.1038/nphys1157]
[9]   Resource-efficient linear optical quantum computation [J].
Browne, DE ;
Rudolph, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[10]   Quantum Computation in Correlation Space and Extremal Entanglement [J].
Cai, J. -M. ;
Duer, W. ;
Van den Nest, M. ;
Miyake, A. ;
Briegel, H. J. .
PHYSICAL REVIEW LETTERS, 2009, 103 (05)