Size, strain and band offset engineering in GaAs(Sb)(N)-capped InAs quantum dots for 1.3-1.55 μm emitters

被引:0
|
作者
Ulloa, J. M. [1 ]
del Moral, M. [1 ]
Montes, M. [1 ]
Bozkurt, M. [2 ]
Koenraad, P. M. [2 ]
Guzman, A. [1 ]
Hierro, A. [1 ]
机构
[1] Univ Politecn Madrid, ISOM, Ciudad Univ S-N, E-28040 Madrid, Spain
[2] Eindhoven Univ Technol, Dept Appl Phys, Photon & Semicond Nanophys, NL-5600 MB Eindhoven, Netherlands
来源
QUANTUM DOTS AND NANOSTRUCTURES: SYNTHESIS, CHARACTERIZATION, AND MODELING VIII | 2011年 / 7947卷
关键词
Quantum dot; photoluminescence; GaAsSb; GaAsSbN; diluted nitrides; WAVELENGTH LIGHT-EMISSION; GAASSB; PHOTOLUMINESCENCE; MICROSCOPY; LAYER; SHAPE;
D O I
10.1117/12.875014
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The optical and structural properties of InAs/GaAs quantum dots (QD) are strongly modified through the use of a thin (similar to 5 nm) GaAsSb(N) capping layer. In the case of GaAsSb-capped QDs, cross-sectional scanning tunnelling microscopy measurements show that the QD height can be controllably tuned through the Sb content up to similar to 14 % Sb. The increased QD height (together with the reduced strain) gives rise to a strong red shift and a large enhancement of the photoluminescence (PL) characteristics. This is due to improved carrier confinement and reduced sensitivity of the excitonic bandgap to QD size fluctuations within the ensemble. Moreover, the PL degradation with temperature is strongly reduced in the presence of Sb. Despite this, emission in the 1.5 mu m region with these structures is only achieved for high Sb contents and a type-II band alignment that degrades the PL. Adding small amounts of N to the GaAsSb capping layer allows to progressively reduce the QD-barrier conduction band offset. This different strategy to red shift the PL allows reaching 1.5 mu m with moderate Sb contents, keeping therefore a type-I alignment. Nevertheless, the PL emission is progressively degraded when the N content in the capping layer is increased.
引用
收藏
页数:9
相关论文
共 42 条
  • [21] 1.3μm InAs/GaAs self-assembled quantum dots grown on In0.2Ga0.8As-GaAs combined strain-buffer layer
    Fang, ZD
    Gong, Z
    Miao, ZH
    Niu, ZC
    Shen, GD
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2005, 24 (05) : 324 - 327
  • [22] Enhanced Photoluminescence of 1.3?m InAs Quantum Dots Grown on Ultrathin GaAs Buffer/Si Templates by Suppressing Interfacial Defect Emission
    Kim, Yeonhwa
    Chu, Rafael Jumar
    Ryu, Geunhwan
    Woo, Seungwan
    Lung, Quang Nhat Dang
    Ahn, Dae-Hwan
    Han, Jae-Hoon
    Choi, Won Jun
    Jung, Daehwan
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (39) : 45051 - 45058
  • [23] Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band
    Bordel, Damien
    Guimard, Denis
    Rajesh, Mohan
    Nishioka, Masao
    Augendre, Emmanuel
    Clavelier, Laurent
    Arakawa, Yasuhiko
    APPLIED PHYSICS LETTERS, 2010, 96 (04)
  • [24] The influences of thickness of spacing layer and the elastic anisotropy on the strain fields and band edges of InAs/GaAs conical shaped quantum dots
    Liu Yu-Min
    Yu Zhong-Yuan
    Ren Xiao-Min
    CHINESE PHYSICS B, 2009, 18 (01) : 16 - 22
  • [25] Optically-detected microwave resonance in InGaAsN/GaAs quantum wells and InAs/GaAs quantum dots emitting around 1.3 μm
    Baranov, P. G.
    Romanov, N. G.
    Preobrazhenski, V. L.
    Egorov, A. Yu.
    Ustinov, V. M.
    Sobolev, M. M.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, VOL 2, NO 6, 2003, 2 (06): : 469 - 478
  • [26] Defect annihilation-mediated enhanced activation energy of GaAs0.979N0.021-capped InAs/GaAs quantum dots by H- ion implantation
    Biswas, Mahitosh
    Singh, Sandeep
    Balgarkashi, Akshay
    Makkar, Roshan L.
    Bhatnagar, Anuj
    Subrahmanyam, N. B. V.
    Gupta, Shrikrishna K.
    Bhagwat, Pramod
    Chakrabarti, Subhananda
    THIN SOLID FILMS, 2017, 639 : 73 - 77
  • [27] NEAR-1.3-MU-M HIGH-INTENSITY PHOTOLUMINESCENCE AT ROOM-TEMPERATURE BY INAS/GAAS MULTI-COUPLED QUANTUM DOTS
    TACKEUCHI, A
    NAKATA, Y
    MUTO, S
    SUGIYAMA, Y
    INATA, T
    YOKOYAMA, N
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1995, 34 (4A): : L405 - L407
  • [28] Band alignment and carrier recombination of InAs/GaAs1-xSbx quantum dots affected by Sb content
    Ji Lian
    Ye Sai
    Lu ShuLong
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2018, 48 (10)
  • [29] Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes
    Zhou, P. Y.
    Dou, X. M.
    Wu, X. F.
    Ding, K.
    Li, M. F.
    Ni, H. Q.
    Niu, Z. C.
    Jiang, D. S.
    Sun, B. Q.
    SCIENTIFIC REPORTS, 2014, 4
  • [30] Simulation of Quantum Dots Size and Spacing Effect for Intermediate Band Solar Cell Application Based on InAs Quantum Dots Arrangement In GaAs
    Hendra, I. B. P.
    Rahayu, F.
    Darma, Y.
    4TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS 2012)L: SCIENCE FOR HEALTH, FOOD AND SUSTAINABLE ENERGY, 2014, 1589 : 221 - 224