Homogeneous G-structures

被引:1
作者
Tortorella, Alfonso Giuseppe [1 ]
Vitagliano, Luca [2 ]
Yudilevich, Ori [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[2] Univ Salerno, DipMat, Via Giovanni Paolo II 123, I-84084 Fisciano, SA, Italy
关键词
G-structures; Contact structures; Atiyah algebroid;
D O I
10.1007/s10231-020-00972-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theory of G-structures provides us with a unified framework for a large class of geometric structures, including symplectic, complex and Riemannian structures, as well as foliations and many others. Surprisingly, contact geometry-the "odd-dimensional counterpart" of symplectic geometry-does not fit naturally into this picture. In this paper, we introduce the notion of a homogeneous G-structure, which encompasses contact structures, as well as some other interesting examples that appear in the literature.
引用
收藏
页码:2357 / 2380
页数:24
相关论文
共 15 条
[1]  
[Anonymous], 1984, SER PURE MATH
[2]  
Blair D. E., 2002, PROGR MATH, V203
[3]   Remarks on Contact and Jacobi Geometry [J].
Bruce, Andrew James ;
Grabowska, Katarzyna ;
Grabowski, Janusz .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
[4]   A SURVEY ON COSYMPLECTIC GEOMETRY [J].
Cappelletti-Montano, Beniamino ;
De Nicola, Antonio ;
Yudin, Ivan .
REVIEWS IN MATHEMATICAL PHYSICS, 2013, 25 (10)
[5]  
Crainic M, 2015, LECT NOTES
[6]  
Geiges H., 2008, CAMBRIDGE STUD ADV M, V109
[7]   SOME GLOBAL PROPERTIES OF CONTACT STRUCTURES [J].
GRAY, JW .
ANNALS OF MATHEMATICS, 1959, 69 (02) :421-450
[8]   Symplectic and Poisson geometry on b-manifolds [J].
Guillemin, Victor ;
Miranda, Eva ;
Pires, Ana Rita .
ADVANCES IN MATHEMATICS, 2014, 264 :864-896
[9]  
KOBAYASHI S, 1972, TRANSFORMATION GROUP
[10]  
Mackenzie K., 2005, LONDON MATH SOC LECT, V213