Intrusion Detection with Unsupervised Techniques for Network Management Protocols over Smart Grids

被引:5
|
作者
Vega Vega, Rafael Alejandro [1 ]
Chamoso-Santos, Pablo [2 ,3 ]
Gonzalez Briones, Alfonso [2 ,3 ,4 ]
Casteleiro-Roca, Jose-Luis [1 ]
Jove, Esteban [1 ]
del Carmen Meizoso-Lopez, Maria [1 ]
Antonio Rodriguez-Gomez, Benigno [1 ]
Quintian, Hector [1 ]
Herrero, Alvaro [5 ]
Matsui, Kenji [6 ]
Corchado, Emilio [2 ]
Luis Calvo-Rolle, Jose [1 ]
机构
[1] Univ A Coruna, Dept Ind Engn, Ferrol 15403, Spain
[2] Univ Salamanca, BISITE Res Grp, Edificio I D I,Calle Espejo 2, Salamanca 37007, Spain
[3] IoT Digital Innovat Hub Spain, Air Inst, Calle Segunda 4, Salamanca 37188, Spain
[4] Univ Complutense Madrid, Res Grp Agent Based Social & Interdisciplinary Ap, Madrid 28040, Spain
[5] Univ Burgos, Dept Ingn Informat, Escuela Politecn Super, Grp Inteligencia Computac Aplicada GICAP, Ave Cantabria S-N, Burgos 09006, Spain
[6] Osaka Inst Technol, Fac Robot & Design, Osaka 5358585, Japan
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 07期
关键词
smart grid; computational intelligence; automatic response; exploratory projection pursuit; neural networks; CLUSTERING EXTENSION; MOVICAB-IDS; SECURITY; VISUALIZATION; PERSPECTIVE;
D O I
10.3390/app10072276
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The present research work focuses on overcoming cybersecurity problems in the Smart Grid. Smart Grids must have feasible data capture and communications infrastructure to be able to manage the huge amounts of data coming from sensors. To ensure the proper operation of next-generation electricity grids, the captured data must be reliable and protected against vulnerabilities and possible attacks. The contribution of this paper to the state of the art lies in the identification of cyberattacks that produce anomalous behaviour in network management protocols. A novel neural projectionist technique (Beta Hebbian Learning, BHL) has been employed to get a general visual representation of the traffic of a network, making it possible to identify any abnormal behaviours and patterns, indicative of a cyberattack. This novel approach has been validated on 3 different datasets, demonstrating the ability of BHL to detect different types of attacks, more effectively than other state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Adaptive ensembles of autoencoders for unsupervised IoT network intrusion detection
    Siddiqui, Abdul Jabbar
    Boukerche, Azzedine
    COMPUTING, 2021, 103 (06) : 1209 - 1232
  • [22] UNPCC: A novel unsupervised classification scheme for network intrusion detection
    Xie, Zongxing
    Quirino, Thiago
    Shyu, Mei-Ling
    ICTAI-2006: EIGHTEENTH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, : 743 - +
  • [23] Integrating intrusion detection and network management
    Qin, XH
    Lee, W
    Lewis, L
    Cabrera, JBD
    NOMS 2002: IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM: MANAGEMENT SOLUTIONS FOR THE NEW COMMUNICATIONS WORLD, 2002, : 329 - 344
  • [24] Evaluating clustering techniques for network intrusion detection
    Zhong, S
    Khoshgoftaar, T
    Seliya, N
    TENTH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2004, : 173 - 177
  • [25] Towards Model Generalization for Intrusion Detection: Unsupervised Machine Learning Techniques
    Verkerken, Miel
    D'hooge, Laurens
    Wauters, Tim
    Volckaert, Bruno
    De Turck, Filip
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (01)
  • [26] Towards Model Generalization for Intrusion Detection: Unsupervised Machine Learning Techniques
    Miel Verkerken
    Laurens D’hooge
    Tim Wauters
    Bruno Volckaert
    Filip De Turck
    Journal of Network and Systems Management, 2022, 30
  • [27] An Intrusion Detection System for the Internet of Things Based on the Ensemble of Unsupervised Techniques
    Wang, Yao
    Sun, Guozi
    Cao, Xiaochun
    Yang, Jiale
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [28] Network Intrusion Detection System Embedded on a Smart Sensor
    Macia-Perez, Francisco
    Mora-Gimeno, Francisco J.
    Marcos-Jorquera, Diego
    Antonio Gil-Martinez-Abarca, Juan
    Ramos-Morillo, Hector
    Lorenzo-Fonseca, Iren
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (03) : 722 - 732
  • [29] Specification-based Intrusion Detection for Home Area Networks in Smart Grids
    Jokar, Paria
    Nicanfar, Hasen
    Leung, Victor C. M.
    2011 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2011,
  • [30] A Big Data Framework for Intrusion Detection in Smart Grids Using Apache Spark
    Vimalkumar, K.
    Radhika, N.
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 198 - 204