The dynamical behavior of a predator-prey system with Gompertz growth function and impulsive dispersal of prey between two patches

被引:11
作者
Zhang, Long [1 ]
Tenga, Zhidong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
predator-prey model; impulsive dispersal; predator-extinction periodic solution; global attractivity; permanence; GLOBAL STABILITY; METAPOPULATION DYNAMICS; POPULATION INTERACTIONS; TIME-DELAY; MODELS; DIFFUSION; ENVIRONMENT; PERMANENCE;
D O I
10.1002/mma.3806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a predator-prey model with Gompertz growth function and impulsive dispersal of prey between two patches. Using the dynamical properties of single-species model with impulsive dispersal in two patches and comparison principle of impulsive differential equations, necessary and sufficient criteria on global attractivity of predator-extinction periodic solution and permanence are established. Finally, a numerical example is given to illustrate the theoretical results. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:3623 / 3639
页数:17
相关论文
共 38 条
[1]  
[Anonymous], 1999, Oxford Series in Ecology and Evolution
[2]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, DOI [10.1201/9780203751206, DOI 10.1201/9780203751206]
[3]   GLOBAL STABILITY AND PERIODIC-ORBITS FOR 2-PATCH PREDATOR-PREY DIFFUSION-DELAY MODELS [J].
BERETTA, E ;
SOLIMANO, F ;
TAKEUCHI, Y .
MATHEMATICAL BIOSCIENCES, 1987, 85 (02) :153-183
[4]   GLOBAL ASYMPTOTIC STABILITY OF LOTKA-VOLTERRA DIFFUSION-MODELS WITH CONTINUOUS-TIME DELAY [J].
BERETTA, E ;
TAKEUCHI, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :627-651
[5]  
BERETTA E, 1987, B MATH BIOL, V49, P431, DOI 10.1016/S0092-8240(87)80005-8
[6]   Life-history syndromes: Integrating dispersal through space and time [J].
Buoro, Mathieu ;
Carlson, Stephanie M. .
ECOLOGY LETTERS, 2014, 17 (06) :756-767
[7]   MODELING AND ANALYSIS OF A HARVESTING FISHERY MODEL IN A TWO-PATCH ENVIRONMENT [J].
Cai, Liming ;
Li, Xuezhi ;
Song, Xinyu .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2008, 1 (03) :287-298
[8]   Permanence and extinction for dispersal population systems [J].
Cui, JA ;
Takeuchi, Y ;
Lin, ZS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) :73-93
[9]  
Davidson FA, 1928, U ILL AGR EXP STA B, V302, P192
[10]   Stochastic population growth in spatially heterogeneous environments [J].
Evans, Steven N. ;
Ralph, Peter L. ;
Schreiber, Sebastian J. ;
Sen, Arnab .
JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 66 (03) :423-476